Skip to main content

Advertisement

Log in

Preparation and characterization of morphological and mechanical properties of cellulose cryogel nanofibers reinforced by different polyamide resins

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As environmentally friendly materials, cellulose cryogels are good choices due to their biodegradability and ease of use. However, the most crucial issue concerning cellulose cryogels is their weakness in terms of mechanical properties. In this study, two types of Polyamide-Epichlorohydrine resins, named PAE1 and PAE2, and Polyamide-Glutaraldehide-Epichlorohydrine resin (PGE) were synthesized; they were utilized to reinforce cellulose nanofiber gel (CNFG), and this was followed by the freeze-drying process. The density and porosity of the cryogels were improved and evaluated using mathematical equations. The mechanical behavior of the fabricated specimens was examined to obtain the optimized values of processing time and temperature, as well as the resin weight fraction, which yielded the improvement of compressive modulus, yield strength, and the stress at 60% strain (S60) to 2 (MPa), 50 (kPa), and 1.8 (MPa) respectively. Also, attenuated total reflection (ATR) analysis was conducted to study the effect of resins on the cross-linking of cellulose nanofibers (CNF)s; further, nitrogen adsorption–desorption analysis was performed to investigate the specific surface area and mesopore diameter distribution of cryogels using Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data are available on request from the authors.

References

  1. Budtova T (2019) Cellulose II aerogels: A review. Cellulose 26(1):81–121

    Article  CAS  Google Scholar 

  2. Book G (2014) Compendium of chemical terminology. Int Union Pure Appl Chem 528

  3. Aegerter MA, Leventis N, Koebel MM (2011) Advances in sol-gel derived materials and technologies. Aerogels Handbook; Springer New York, NY, USA

  4. Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: Processing, properties, and applications. J Mater Chem A 5(31):16105–16117

    Article  CAS  Google Scholar 

  5. Shahzamani M, Taheri S, Roghanizad A, Naseri N, Dinari M (2020) Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int J Biological Macromol 147:187–193

    Article  CAS  Google Scholar 

  6. Buchtová N, Pradille C, Bouvard JL, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15(39):7901–7908

    Article  PubMed  Google Scholar 

  7. Sahiner N, Demirci S, Aktas N (2017) Superporous cryogel/conductive composite systems for potential sensor applications. J Polym Res 24:1–11

    Article  CAS  Google Scholar 

  8. Pamfil D, Butnaru E, Vasile C (2016) Poly (vinyl alcohol)/chitosan cryogels as pH responsive ciprofloxacin carriers. J Polym Res 23:1–14

    Article  CAS  Google Scholar 

  9. Jain A, Bajpai J, Bajpai AK (2017) Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile)(P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity. J Polym Res 24:1–14

    Article  CAS  Google Scholar 

  10. Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW (2000) Mechanical structure–property relationship of aerogels. J Non Cryst Solids 277(2–3):127–141

    Article  CAS  Google Scholar 

  11. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113

    Article  PubMed  Google Scholar 

  12. Tan H, Wu B, Li C, Mu C, Li H, Lin W (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr Polym 129:17–24

    Article  CAS  PubMed  Google Scholar 

  13. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. TRENDS Biotechnol 21(10):445–451

    Article  CAS  PubMed  Google Scholar 

  14. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83(4):1766–1774

    Article  CAS  Google Scholar 

  15. Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832

    Article  CAS  Google Scholar 

  16. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  17. Plappert SF, Nedelec JM, Rennhofer H, Lichtenegger HC, Bernstorff S, Liebner FW (2018) Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion: an approach toward anisotropic gels and aerogels. Biomacromol 19(11):4411–4422

    Article  CAS  Google Scholar 

  18. Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140(1–3):9–16

    Article  CAS  Google Scholar 

  19. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 15(6):2188–2195

    Article  CAS  Google Scholar 

  20. Groult S, Budtova T (2018) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81

    Article  CAS  PubMed  Google Scholar 

  21. Tang J, Song Y, Zhao F, Spinney S, da Silva BJ, Tam KC (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412

    Article  CAS  PubMed  Google Scholar 

  22. Tang C, Brodie P, Brunsting M, Tam KC (2020) Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal. Carbohydr Polym 242:116397

    Article  CAS  PubMed  Google Scholar 

  23. Mo L, Pang H, Tan Y, Zhang S, Li J (2019) 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu (II) ions from water. Chem Eng J 378:122157

    Article  CAS  Google Scholar 

  24. Erlandsson J, Pettersson T, Ingverud T, Granberg H, Larsson PA, Malkoch M et al (2018) On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A 6(40):19371–19380

    Article  CAS  Google Scholar 

  25. Liu J, Su D, Yao J, Huang Y, Shao Z, Chen X (2017) Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. J Mater Chem A 5(8):4163–4171

    Article  CAS  Google Scholar 

  26. Li Y, Grishkewich N, Liu L, Wang C, Tam KC, Liu S et al (2019) Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 366:531–538

    Article  CAS  Google Scholar 

  27. Li M, Messele SA, Boluk Y, El-Din MG (2019) Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydr Polym 221:231–241

    Article  CAS  PubMed  Google Scholar 

  28. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  29. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  PubMed  Google Scholar 

  30. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci An Int J 16(4):149–158

    Article  CAS  Google Scholar 

  31. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  32. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  33. Sharma S, Deng Y (2016) Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind Eng Chem Res 55(44):11467–11474

    Article  CAS  Google Scholar 

  34. Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22(23):11642–11650

    Article  CAS  Google Scholar 

  35. Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surf A Physicochem Eng Asp 302(1–3):525–531

    Article  CAS  Google Scholar 

  36. Zheng T, Li A, Li Z, Hu W, Shao L, Lu L et al (2017) Mechanical reinforcement of a cellulose aerogel with nanocrystalline cellulose as reinforcer. RSC Adv 7(55):34461–34465

    Article  CAS  Google Scholar 

  37. Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300

    Article  CAS  PubMed  Google Scholar 

  38. Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348

    Article  CAS  PubMed  Google Scholar 

  39. Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236

    Article  CAS  Google Scholar 

  40. Revin VV, Pestov NA, Shchankin MV, Mishkin VP, Platonov VI, Uglanov DA (2019) A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose. Biomacromol 20(3):1401–1411

    Article  CAS  Google Scholar 

  41. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125(1–2):67–75

    Article  CAS  Google Scholar 

  42. Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354(40–41):4556–4561

    Article  CAS  Google Scholar 

  43. Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78

    Article  CAS  Google Scholar 

  44. Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous mesoporous Mater 183:23–29

    Article  CAS  Google Scholar 

  45. Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22(1):435–447

    Article  CAS  Google Scholar 

  46. Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400

    Article  CAS  PubMed  Google Scholar 

  47. Li Z, Yang L, Cao H, Chang Y, Tang K, Cao Z et al (2017) Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydr Polym 175:223–230

    Article  CAS  PubMed  Google Scholar 

  48. Nayak AK, Das B (2018) Introduction to polymeric gels. Polym Gels. Elsevier 3–27

  49. Xing QQ, Zhao CS, Han WJ (2012) Manufacture and application of PAE as wet strength agent. Adv Mater Res. Trans Tech Publ 1070–1073

  50. Keim GI (1967) Cationic water-soluble polyamide-epichlorohydrin resins and method of preparing same. US Patent 3,332,901

  51. Horowitz F (1975) Polyamide/formaldehyde/epichlorohydrin wet strength resins and use thereof in production of wet strength paper. US Patent 3,914,155

  52. Ulazia A, Sáenz J, Ibarra-Berastegi G, González-Rojí SJ, Carreno-Madinabeitia S (2019) Global estimations of wind energy potential considering seasonal air density changes. Energy 187:115938

    Article  Google Scholar 

  53. Sun CC (2005) True density of microcrystalline cellulose. J Pharm Sci 94(10):2132–2134

    Article  CAS  PubMed  Google Scholar 

  54. Xiong J, Li Q, Shi Z, Ye J (2017) Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res Int 100:858–863

    Article  CAS  PubMed  Google Scholar 

  55. Wu T, Farnood R (2015) A preparation method of cellulose fiber networks reinforced by glutaraldehyde-treated chitosan. Cellulose 22(3):1955–1961. https://doi.org/10.1007/s10570-015-0609-z

    Article  CAS  Google Scholar 

  56. Chen Y, Li S, Li X, Mei C, Zheng JES et al (2021) Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels. ACS Nano 15(12):20666–20677

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Zhou L, Chen L, Duan G, Mei C, Huang C et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26(11):6653–6667

    Article  CAS  Google Scholar 

  58. Kruer-Zerhusen N, Cantero-Tubilla B, Wilson DB (2018) Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 25(1):37–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Dinari.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3432 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, B., Dinari, M., Karevan, M. et al. Preparation and characterization of morphological and mechanical properties of cellulose cryogel nanofibers reinforced by different polyamide resins. J Polym Res 30, 301 (2023). https://doi.org/10.1007/s10965-023-03697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03697-4

Keywords

Navigation