Skip to main content
Log in

Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulase activity on insoluble cellulose substrates declines as the substrate is modified. The role of structural changes that result in substrate recalcitrance, such as changes to cellulose crystallinity, requires further investigation. Crystallinity of cellulose samples with varying extents of digestion can only be compared meaningfully using a high throughput - Fourier transform infrared spectroscopy (HTS-FTIR) technique when the many variables involved are carefully controlled. Hence, changes to the HTS-FTIR sample preparation methods previously described in literature were necessary in order to obtain clean raw spectra and reliable measures of cellulose crystallinity. The sample preparation methods of residual cellulose after digestion by individual cellulases and a complex cellulase mixture from T. fusca were improved to remove extraneous overlapping signals, provide accurate extent of digestion, and correct errors caused by varying concentrations. These improved preparation methods enabled measurement of crystallinity index values of residual cellulose which did not show a correlation between cellulose crystallinity and the decline in cellulase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: a
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(4):1–11

    Google Scholar 

  • Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2016) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotech 16(10):470–482

    Google Scholar 

  • Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer E (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(3):829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannella D, Hsieh C, Felby C, Jogensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(26):1–10

    Google Scholar 

  • Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohyd Res 337(14):1291–1296

    Article  CAS  Google Scholar 

  • Chalmers J (2006) Mid-infrared spectroscopy: anomalies, artifacts and common errors. Handb Vib Spectrosc 2327–2347

  • Chen Y, Stipanovix A, Winter W, Wilson D, Kim Y (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

  • Corgie S, Smith H, Walker L (2011) Enzymatic transformations of cellulose assessed by quantitative high-throughput Fourier transform infrared spectroscopy (QHT-FTIR). Biotechnol Bioeng 108(7):1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Donaldson L, Vaidya A (2017) Visualizing recalcitrance by colocalization of cellulase, lignin, and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 7:44386

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Mackenzie A, Sorlie M, Rohr A, Helland R, Arvai A, Fijsink V (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(23):8446–8451

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Gourlay K, Arantes V, Van Dyk J, Pribowo A, Saddler J (2015) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Chemsuschem 8(5):901–907

    Article  CAS  PubMed  Google Scholar 

  • Hurtubise F, Krassig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Anal Chem 32(2):177–181

    Article  CAS  Google Scholar 

  • Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin D, Zhang S, Wilson D (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267(16):4988–4997

    Article  CAS  PubMed  Google Scholar 

  • Irwin D, Leathers T, Greene R, Wilson D (2003) Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes. Appl Microbiol Biotechnol 61(4):352–358

    Article  CAS  PubMed  Google Scholar 

  • Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohyd Polym 97(2):581–586

    Article  CAS  Google Scholar 

  • King B, Donnelly M, Bergstrom G, Walker L, Gibson D (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Kostylev M, Wilson D (2011) Determination of the catalytic base in family 48 glycosyl hydrolases. Appl Environ Microbiol 77(17):6274–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostylev M, Wilson D (2013) Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52(33):5656–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80(1):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostylev M, Alahuhta M, Chen M, Brunecky R, Himmel M, Lunin V, Wilson D (2014) Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues. Biotechnol Bioeng 111(4):664–673

    Article  CAS  PubMed  Google Scholar 

  • Lever M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Irwin D, Wilson D (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9a. Appl Environ Microbiol 76:2582–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Manffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910–1922

    Article  CAS  PubMed Central  Google Scholar 

  • Mansfield S, Meder R (2003) Cellulose hydrolysis–the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10(2):159–169

    Article  CAS  Google Scholar 

  • Mitchell A (1990) Second-derivative FT-IR spectra of native celluloses. Carbohyd Res 197:53–60

    Article  Google Scholar 

  • Nada A, Kamel S, El-Sahkhawy M (2000) Thermal behavior and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355

    Article  CAS  Google Scholar 

  • Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattices types I, II, III, and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324

    Article  CAS  Google Scholar 

  • Olsen S, Borch K, Cruys-Bagger N, Westh P (2014) The role of product inhibition as a yield- determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol 174(1):146–155

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10

    Google Scholar 

  • Peciulyte A, Kiskis J, Larson P, Olssson L, Enejder A (2016) Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy. Cellulose 23:1521–1536

    Article  CAS  Google Scholar 

  • Väljamäe P, Slid V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253(2):469–475

    Article  PubMed  Google Scholar 

  • Väljamäe P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng 84(2):254–257

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81

    Article  CAS  Google Scholar 

  • Zhang S, Wolfgang D, Wilson D (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Irwin D, Wilson D (2000) Site-directed mutation of non-catalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267(11):3101–3115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Larry Walker from Cornell University. Work was funded by a grant from the US Department of Energy BioEnergy Science Center (BESC). The research was supported by a fellowship from Obra Social “La Caixa”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Cantero-Tubilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruer-Zerhusen, N., Cantero-Tubilla, B. & Wilson, D.B. Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 25, 37–48 (2018). https://doi.org/10.1007/s10570-017-1542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1542-0

Keywords

Navigation