Skip to main content
Log in

Toward an understanding of the effects of nanocellulose during the free-radical polymerization reactions. Kinetic aspects of suspension-free radical polymerization of methyl methacrylate (MMA) in the presence and absence of nanocellulose

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to examine the evolution of monomer conversion during suspension free radical polymerization of methyl methacrylate (MMA) at 80 °C, both in the presence and absence of nanocellulose obtained via TEMPO oxidation. The main focus of this work is on the kinetic aspects of MMA polymerization, particularly the diffusive step of the termination reaction and its impact on polymeric radicals. Experimental conversion evolutions are tracked using gravimetry. In addition, we employed an existing mathematical model to describe the effects of nanocellulose during polymerization, using the Einstein diffusion equation, geometric considerations and an approach that accounts for termination between short and long polymeric radicals. This model explains the evolution of monomer conversion regarding the effects produced by nanocellulose during the free radical polymerization reactions, focusing on factors that affect the diffusive termination step as difficulties for the short polymeric radicals reacting with the long radicals and the decrease of the segmental mobility. Our experimental results exhibit a premature autoacceleration with the presence of nanocellulose during polymerization reactions. Based on the adjustments made to the model, the theoretical results suggest that this reaction behavior is due to the impact of nanocellulose on the termination stage, which hinders a successful termination collision between short and long polymeric radicals while decreasing the segmental mobility of long radicals. Therefore, at higher nanocellulose content, the termination coefficient is reduced further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data of this study are available from the authors upon reasonable request.

References

  1. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Johan MR, Fen LB (2020) Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884. https://doi.org/10.1016/j.jmbbm.2020.103884

    Article  CAS  PubMed  Google Scholar 

  2. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH (2020) Nanocellulose: from fundamentals to advanced applications. Front Chem 8:392. https://doi.org/10.3389/fchem.2020.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Norizan MN, Shazleen SS, Alias AH, Sabaruddin FA, Asyraf MRM, Zainudin ES, Norrrahim MNF (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials 12(19):3483. https://doi.org/10.3390/nano12193483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Liu X, Jin T, He H, Liu L (2019) Preparation of nanocellulose and its potential in reinforced composites: A review. J Biomater Sci Polym Ed 30(11):919–946. https://doi.org/10.1080/09205063.2019.1612726

    Article  CAS  PubMed  Google Scholar 

  5. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043

    Article  CAS  Google Scholar 

  6. Gan PG, Sam ST, Abdullah MFB, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: A review. J Appl Polym Sci 137(11):48544. https://doi.org/10.1002/app.48544

    Article  CAS  Google Scholar 

  7. Ganapathy V, Muthukumaran G, Sudhagar PE, Rashedi A, Norrrahim MNF, Ilyas RA, Naveen J (2023) Mechanical properties of cellulose-based multiscale composites: A review. Polym Compos 44(2):734–756. https://doi.org/10.1002/pc.27175

    Article  CAS  Google Scholar 

  8. Kim DW, Shin J, Choi SQ (2020) Nano-dispersed cellulose nanofibrils-PMMA composite from pickering emulsion with tunable interfacial tensions. Carbohyd Polym 247:116762. https://doi.org/10.1016/j.carbpol.2020.116762

    Article  CAS  Google Scholar 

  9. Ali Sabri B, Satgunam M, Abreeza NMN, Abed A (2021) A review on enhancements of PMMA denture base material with different nano-fillers. Cogent Eng 8(1):1875968. https://doi.org/10.1080/23311916.2021.1875968

    Article  Google Scholar 

  10. Saxena P, Shukla P (2022) A comparative analysis of the basic properties and applications of poly (vinylidene fluoride)(PVDF) and poly (methyl methacrylate)(PMMA). Polym Bull 79(8):5635–5665. https://doi.org/10.1007/s00289-021-03790-y

    Article  CAS  Google Scholar 

  11. Zafar MS (2020) Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 12(10):2299. https://doi.org/10.3390/polym12102299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babo S, Ferreira JL, Ramos AM, Micheluz A, Pamplona M, Casimiro MH, Melo MJ (2020) Characterization and long-term stability of historical PMMA: impact of additives and acrylic sheet industrial production processes. Polymers 12(10):2198. https://doi.org/10.3390/polym12102198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym Rev 55(4):678–705. https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  14. Sain S, Ray D, Mukhopadhyay A, Sengupta S, Kar T, Ennis CJ, Rahman PK (2012) Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J Appl Polym Sci 126(S1):E127–E134. https://doi.org/10.1002/app.36723

    Article  CAS  Google Scholar 

  15. Victoria-Valenzuela D, Herrera-Ordonez J, Luna-Barcenas G (2016) Toward a general methodology for modeling diffusive-controlled reactions in free radical polymerization. Macromol Theory Simul 25(1):28–44. https://doi.org/10.1002/mats.201500025

    Article  CAS  Google Scholar 

  16. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  17. del Pino M, Pérez LA, Morales Cepeda AB, Castro-Guerrero CF, Leon Silva U (2021) One step in situ synthesis of Ag/AgCl nanoparticles in a cellulose nanofiber matrix for the development of energy storage paper. Cellulose 28(10):6339–6351. https://doi.org/10.1007/s10570-021-03922-7

    Article  CAS  Google Scholar 

  18. Buback M, Russell GT (2023) Detailed analysis of termination kinetics in radical polymerization. Polym Int. https://doi.org/10.1002/pi.6501

    Article  Google Scholar 

  19. Achilias DS, Kiparissides C (1992) Development of a general mathematical framework for modeling diffusion-controlled free-radical polymerization reactions. Macromolecules 25(14):3739–3750. https://doi.org/10.1021/ma00040a021

    Article  CAS  Google Scholar 

  20. Chiu WY, Carratt GM, Soong DS (1983) A computer model for the gel effect in free-radical polymerization. Macromolecules 16(3):348–357. https://doi.org/10.1021/ma00237a002

    Article  CAS  Google Scholar 

  21. Achilias DS, Verros GD (2010) Modeling of diffusion-controlled reactions in free radical solution and bulk polymerization: Model validation by DSC experiments. J Appl Polym Sci 116(3):1842–1856. https://doi.org/10.1002/app.31675

    Article  CAS  Google Scholar 

  22. Balke ST, Hamielec AE (1973) Bulk polymerization of methyl methacrylate. J Appl Polym Sci 17(3):905–949. https://doi.org/10.1002/app.1973.070170320

    Article  CAS  Google Scholar 

  23. Vivaldo-Lima E, Wood PE, Hamielec AE, Penlidis A (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36(4):939–965. https://doi.org/10.1021/ie960361g

    Article  CAS  Google Scholar 

  24. Dhib R, Gao J, Penlidis A (2000) Simulation of free radical bulk/solution homopolymerization using mono-and bi-functional initiators. Polym React Eng 8:299–464. https://doi.org/10.1080/10543414.2000.10744557

    Article  CAS  Google Scholar 

  25. Kalfas G, Yuan H, Ray WH (1993) Modeling and experimental studies of aqueous suspension polymerization processes. 2. Experiments in batch reactors. Ind Eng Chem Res 32(9):1831–1838. https://doi.org/10.1021/ie00021a005

    Article  CAS  Google Scholar 

  26. Victoria-Valenzuela D, Herrera-Ordonez J, Luna-Barcenas G, Verros GD, Achilias DS (2016) Bulk free radical polymerization of methyl methacrylate and vinyl acetate: a comparative study. Macromol React Eng 10(6):577–587. https://doi.org/10.1002/mren.201600008

    Article  CAS  Google Scholar 

  27. Vivaldo-Lima E, Saldívar-Guerra E (2013) Handbook of polymer synthesis, characterization, and processing. John Wiley & Sons, Incorporated

    Google Scholar 

  28. Griffiths MC, Strauch J, Monteiro MJ, Gilbert RG (1998) Measurement of diffusion coefficients of oligomeric penetrants in rubbery polymer matrixes. Macromolecules 31(22):7835–7844

    Article  CAS  Google Scholar 

  29. Zhang B, Huang C, Zhao H, Wang J, Yin C, Zhang L, Zhao Y (2019) Effects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers 11(12):2063. https://doi.org/10.3390/polym11122063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17(3):132–140. https://doi.org/10.1016/j.cocis.2012.01.004

    Article  CAS  Google Scholar 

  31. Nikolaidis AK, Achilias DS, Karayannidis GP (2011) Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Ind Eng Chem Res 50(2):571–579. https://doi.org/10.1021/ie100186a

    Article  CAS  Google Scholar 

  32. Achilias D, Nikolaidis A, Karayannidis G (2010) PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization: Study of the reaction kinetics. J Therm Anal Calorim 102(2):451–460. https://doi.org/10.1007/s10973-010-0935-1

    Article  CAS  Google Scholar 

  33. Achilias DS, Siafaka P, Nikolaidis AK (2012) Polymerization kinetics and thermal properties of poly (alkyl methacrylate)/organomodified montmorillonite nanocomposites. Polym Int 61(10):1510–1518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Victoria-Valenzuela thanks to Consejo Nacional de Ciencia y Tecnología (CONACYT) now Consejo Nacional de Humanidades Ciencias y Tecnologías (Conahcyt), for the postdoctoral fellowship corresponding to the call: ESTANCIAS POSDOCTORALES POR MÉXICO MODALIDAD 1. Into the Master program; in Science in Chemical Engineering (TecNM campus Cd. Madero). Cárdenas-Rangel thanks CONACYT for the master's scholarship 803640 in the same program. TECNM for the economic support for the project's development (16807.23-P INCORPORACIÓN DE NANOCELULOSA DENTRO DE RESINAS DE IMPORTANCIA COMERCIAL, MEDIANTE POLIMERIZACIÓN VÍA RADICALES LIBRES. ESTUDIO TEÓRICO Y EXPERIMENTAL DE LOS EFECTOS DE LA NANOCELULOSA) and Styropek for the donation of the initiator. The authors also appreciate the critical contributions made by the three anonymous reviewers and the assistance in grammar and style recommendations by Dr. Omar Alejandro Cabrero Martínez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Victoria‑Valenzuela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors contributed equally to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Experimental results

Table 1 shows the monomer conversion calculated with Eq. 1 corresponding to the reaction with and without nanocellulose. The monomer conversions were calculated with experimental data and the model results were graphed in Fig. 3 to analyze their tendency and causes.

Table 1 Experimental monomer conversion at 80 °C using 0.5 wt0% of BPO and the weight fraction percentage of nanocellulose (NC) indicated. All percentages are based on the monomer

The results of Table 1 are the values obtained (truncated to two decimal places), with differences in the range of 1e-4. Therefore, the experiments presented good reproducibility.

Main kinetic equations

$$\frac{d\left[{I}_{2}\right]}{dt}=-{k}_{d}\left[{I}_{2}\right]- \frac{\left[{I}_{2}\right]}{V} \frac{dV}{dt}$$
(11)
$$\frac{d\left[C\right]}{dt}={k}_{d}\left[{I}_{2}\right]-{k}_{ti}\left[C\right]-{k}_{dd}\left[C\right]-\frac{\left[C\right]}{V} \frac{dV}{dt}$$
(12)
$$\frac{d\left[{R}^{*}\right]}{dt}={2k}_{dd}\left[C\right]-{k}_{i}\left[{R}^{*}\right][M]-\frac{\left[{R}^{*}\right]}{V} \frac{dV}{dt}$$
(13)
$$\frac{d[M]}{dt}=-{k}_{p}\left[M\right]\left[{\lambda }_{0}\right]-\frac{\left[M\right]}{V} \frac{dV}{dt}={-R}_{p}$$
(14)

The differential Equation for moments 0, 1 and 2 of “live” chains (λ) are:

$$\frac{d{\lambda }_{0}}{dt}={k}_{i}\left[M\right]\left[{R}^{*}\right]-{k}_{t}{ {{\lambda }_{0}}^{2}}-\frac{{\lambda }_{0}}{V}\frac{dV}{dt}$$
(15)
$$\begin {aligned}\frac{d{\lambda }_{1}}{dt}=&{k}_{i}\left[M\right]\left[{R}^{*}\right]+{k}_{p}\left[M\right]{\lambda }_{0}-{{k}_{trm}\left[M\right]\lambda }_{1}\\&+ {{k}_{trm}\left[M\right]\lambda }_{0}-{k}_{t}{{\lambda }_{0}\lambda }_{1}-\frac{{\lambda }_{1}}{V}\frac{dV}{dt}\end {aligned}$$
(16)
$$\begin {aligned}\frac{d{\lambda }_{2}}{dt}=&{k}_{i}\left[M\right]\left[{R}^{*}\right]+2{k}_{p}\left[M\right]{\lambda }_{1}+{k}_{p}\left[M\right]{\lambda }_{0}- {k}_{trm}\left[M\right]{\lambda }_{2}\\&+{k}_{trm}\left[M\right]{\lambda }_{0}-{k}_{t}{{\lambda }_{0}\lambda }_{2}-\frac{{\lambda }_{2}}{V}\frac{dV}{dt}\end {aligned}$$
(17)

Assuming the quasi-steady state approach to Eqs. 15, 16 and 17, Eqs. 18, 19 and 20 are obtained, respectively.

$${\lambda }_{0}={\left(\frac{{2k}_{dd}\left[C\right]{ }-\frac{\left[{R}^{*}\right]}{V}\frac{dV}{dt}}{{k}_{t}}\right)}^{1/2}$$
(18)
$${\lambda }_{1}=\frac{{k}_{i}\left[M\right]\left[{R}^{*}\right]+{\lambda }_{0}({k}_{p}\left[M\right]+{k}_{trm}\left[M\right])}{{k}_{t}{\lambda }_{0}+{k}_{trm}\left[M\right]+\frac{1}{V}\frac{dV}{dt}}$$
(19)
$${\lambda }_{2}=\frac{{k}_{i}\left[M\right]\left[{R}^{*}\right]+{\lambda }_{0}({k}_{p}\left[M\right]+ {k}_{trm}\left[M\right])+2{k}_{p}\left[M\right]{\lambda }_{1}}{{k}_{t}{\lambda }_{0}+{k}_{trm}\left[M\right]+\frac{1}{V}\frac{dV}{dt}}$$
(20)

The differential Equation for moments 0, 1 and 2 of “dead” chains (μ) are:

$$\frac{{d\mu }_{0}}{dt}={k}_{trm}\left[M\right]{\lambda }_{0}+{k}_{t}{\lambda }_{0}{\lambda }_{0}-\frac{\left[{\mu }_{0}\right]}{V} \frac{dV}{dt}$$
(21)
$$\frac{{d\mu }_{1}}{dt}={k}_{trm}\left[M\right]{\lambda }_{1}+{k}_{t}{\lambda }_{1}{\lambda }_{0}-\frac{\left[{\mu }_{1}\right]}{V} \frac{dV}{dt}$$
(22)
$$\frac{{d\mu }_{2}}{dt}={{k}_{trm}[M]\lambda }_{2}+{k}_{t}{{\lambda }_{2}\lambda }_{0}-\frac{\left[{\mu }_{2}\right]}{V} \frac{dV}{dt}$$
(23)

Considering the quasi-steady state approach (QSSA):

$${k}_{i}\left[R^{*}\right][M]={2k}_{dd}\left[C\right]-\frac{\left[{R}^{*}\right]}{V} \frac{dV}{dt}$$
(24)

Mn and Mw are calculated by applying the method of moments.

$${M}_{n}={M}_{M}*\frac{{\mu }_{1}+{\lambda }_{1}}{{\lambda }_{0 }{+\mu }_{0}}$$
(25)
$${M}_{w}={M}_{M}*\frac{{\mu }_{2}+{\lambda }_{2}}{{\lambda }_{1 }{+\mu }_{1}}$$
(26)

where I2 is the initiator, C is a pseudo-complex formed by two contiguous molecules of primary radicals R* (initiator fragments), kd, kti, kdd, ki, kp, kt,ktrm are the rate coefficients for initiator decomposition, recombination between initiator fragments, diffusion of initiator fragments, initiation, propagation, termination and chain transfer to monomer, respectively. M refers to monomer, and MM to its molecular weight.

Rp is the rate of polymerization. In Eq. (14) consumption of monomer by the chain transfer to monomer has been neglected The term dV/dt represents the volume contraction of the reaction mixture resulting from the different densities of monomer (ρmon) and polymer (ρpol) and is given by

$$\frac{dV}{dt}={R}_{p}{M}_{M}V\left(\frac{1}{{\rho }_{pol}}-\frac{1}{{\rho }_{mon}}\right)$$
(27)

Residual plot

Fig. 8
figure 8

err corresponding to the polymerizations carried out in Fig. 3A-C

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victoria‑Valenzuela, D., Morales‑Cepeda, A.B. & Cárdenas-Rangel, E.I. Toward an understanding of the effects of nanocellulose during the free-radical polymerization reactions. Kinetic aspects of suspension-free radical polymerization of methyl methacrylate (MMA) in the presence and absence of nanocellulose. J Polym Res 30, 252 (2023). https://doi.org/10.1007/s10965-023-03637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03637-2

Keywords

Navigation