Skip to main content
Log in

Development history and synthesis of super-absorbent polymers: a review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Super-absorbent polymers (SAPs) refer to a three-dimensional network polymer, water-swellable, water-insoluble, organic or inorganic material that can absorb thousands of times its own weight of distilled water. It is widely used in various fields, such as: agricultural, biomedical, daily physiological products, separation technology and wastewater treatment. In the review, the development history of superabsorbent polymers since 1961 is described, and the polymerization methods of superabsorbent polymers and the wide-ranging use of this type of polymers in life are described in detail. The article introduces four basic polymerization methods, bulk polymerization, solution polymerization, suspension polymerization and radiation polymerization from the preparation methods and types. Not only the detailed methods of polymerization but also their respective advantages and disadvantages are introduced. In recent years, new progress has been made in polymerization methods, for example, in-situ polymerization to obtain an onion-like multilayer tube cellulose hydrogel. The hydrogel has super-absorbent properties, and the water swelling mechanism is briefly introduced. Finally, the latest advances in super-absorbent polymers are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yu X, Wang Z, Liu J, Mei H, Yong D, Li J (2019) Preparation, swelling behaviors and fertilizer-release properties of sodium humate modified superabsorbent resin. Materials Today Communications 19:124–130

    CAS  Google Scholar 

  2. Feng K, Song LJ, Li R et al (2016) Absorbed Pb2+ and Cd2+ ions in water by cross-linked starch Xanthate. Mater Protec 49:177–180

    CAS  Google Scholar 

  3. He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W (2017) Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21

    CAS  Google Scholar 

  4. Mishra B, Upadhyay M, Reddy Adena S et al (2017) Hydrogels: an introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin J Biomed Eng 4:1037

    Google Scholar 

  5. Sun D, Liu WY, Tang AM et al (2019) A new PEGDA/CNF aerogel-wet hydrogel scaffold fabricated by a two-step method. Soft Matter 15(40):8092–8810

    CAS  PubMed  Google Scholar 

  6. Li Z, Gunn J, Chen MH, Cooper A, Zhang M (2008) On-site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. J Biomed Mater Res A 86(2):552–559

    PubMed  Google Scholar 

  7. Singh D, Huh PH, Kim SC (2016) Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams. J Biomed Mater Res A 104(1):48–56

    PubMed  Google Scholar 

  8. Lu J, Zhu W, Dai L, Si C, Ni Y (2019) Fabrication of thermo-and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr Polym 215:289–295. https://doi.org/10.1016/j.carbpol.2019.03.100

    Article  CAS  PubMed  Google Scholar 

  9. Farahani BV, Ghasemzadeh H, Afraz S (2016) Thermodynamic studies of insulin loading into a glucose responsive hydrogel based on chitosan-polyacrylamide-polyethylene glycol. J Chin Chem Soc 63(5):438–444

    CAS  Google Scholar 

  10. Kapadia CH, Tian S, Perry JL, Luft JC, DeSimone JM (2016) Reduction sensitive PEG hydrogels for Codelivery of antigen and adjuvant to induce potent CTLs. Mol Pharm 13(10):3381–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim S, Jung GA, Muckom RJ, Glover DJ, Clark DS (2019) Engineering bioorthogonal protein–polymer hybrid hydrogel as a functional protein immobilization platform. Chem Commun 55(6):806–809

    CAS  Google Scholar 

  12. Pontremoli C, Boffito M, Fiorilli S, Laurano R, Torchio A, Bari A, Tonda-Turo C, Ciardelli G, Vitale-Brovarone C (2018) Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chem Eng J 340:103–113

    CAS  Google Scholar 

  13. Wei YB, Zeng Q, Wang M, Huang JZ et al (2019) Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens Bioelectron 131:156–162

    CAS  PubMed  Google Scholar 

  14. Singh A, Vaishagya KK, Verma R et al (2019) Temperature/pH-triggered PNIPAM-based smart Nanogel system loaded with Anastrozole delivery for application in Cancer chemotherapy. AAPS PharmSciTech 20:213

    PubMed  Google Scholar 

  15. Zhang J, Zhao T, Sun B et al (2018) Effects of biofertilizers and super absorbent polymers on plant growth and soil fertility in the arid mining area of Inner Mongolia, China. J.Mt. (15):1920–1935

  16. Fang L, Zhao Y, Tan T (2016) Preparation and water absorbent behavior of superabsorbent Polyaspartic acid resin. J Polym Res 13:145–152

    Google Scholar 

  17. Zhang Y, Wang L, Li X, He P (2011) Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid. J Polym Res 18:157–161

    CAS  Google Scholar 

  18. Liu X, Luan S, Li W (2019) Utilization of waste hemicelluloses lye for superabsorbent hydrogel synthesis. Int J Biol Macromol 132:954–962

    CAS  PubMed  Google Scholar 

  19. Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180

    CAS  Google Scholar 

  20. Liu ZS, Rempel GL (1997) Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers. J Appl Polym Sci 64(7):1345–1353

    CAS  Google Scholar 

  21. Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, Jiang J, Tan H, Zheng Y (2016) Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater Sci Eng 63:18–29

    CAS  Google Scholar 

  22. Fang S, Wang G, Xing R, Chen X, Liu S, Qin Y, Li K, Wang X, Li R, Li P (2019) Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int J Biol Macromol 132:575–584

    CAS  PubMed  Google Scholar 

  23. Li YL, Ke AR, Lin SB, Ouyang N (2011) Synthesis and properties of superabsorbent hygroscopic materials based on polyacrylamide and poly(2-acrylamido-2-methyl propyl sulfonic acid) co-polymer. Int J Polym Mater 60(14):1164–1177

    CAS  Google Scholar 

  24. Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN (2018) Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials 7(3):153–174

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu ZH, Wen GH, Jin M et al (2014). Mater Protec S1:112–114

    Google Scholar 

  26. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci 73(1):113–120

    CAS  Google Scholar 

  27. Yang Y, Xie Y, Pang L, Li M, Song X, Wen J, Zhao H (2013) Preparation of reduced Graphene oxide/poly(acrylamide) Nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir 29(34):10727–10736

    CAS  PubMed  Google Scholar 

  28. Fanta GF, Burr RC, Russell CR, Rist CE (1966) Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition. J Appl Polym Sci 10(6):929–937

    CAS  Google Scholar 

  29. Fanta GF, Burr RC, Russell CR et al (1966) Graft copolymers of starch. II. Copolymerization of gelatinized wheat starch with acrylonitrile: influence of reaction conditions on copolymer composition. J Polym Sci Pol Phys 4(10):765–769

    CAS  Google Scholar 

  30. Fanta GF, Burr RC, Russell CR, Rist CE (1967) Graft copolymers of starch. III. Copolymerization of gelatinized wheat starch with acrylonitrile. Influence of chain modifiers on copolymer composition. J Appl Polym Sci 11(3):457–463

    CAS  Google Scholar 

  31. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451

    CAS  Google Scholar 

  32. Lin RX, Wang JW (2000) Recent trends in hydrogels based on Starchgraft-acrylic acid: a review. Chinese Polym Bull 2(1):85–93

    Google Scholar 

  33. Zou X X. Super-absorbent polymer. Chinese Chemical Industry Press, 1991

  34. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2006) Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test 25(4):470–474

    CAS  Google Scholar 

  35. Kazanskii K S, Dubrovskii S A. Chemistry and physics of “agricultural” hydrogels. Springer Berlin Heidelberg, 1992, 97–133

  36. Bouranis DL, Theodoropoulos AG (1995) Designing synthetic polymers as soil conditioners. Commun Soil Sci Plan 26(9–10):1455–1480

    CAS  Google Scholar 

  37. Dutkiewicz JK (2002) Superabsorbent materials from shellfish waste—a review. J Biomed Mater Res 63(3):373–381

    CAS  PubMed  Google Scholar 

  38. Ichikawa T, Nakajima T. Polymeric materials encyclopedia, [P] 1996, 3, 8051–8059

  39. Athawale VD, Lele V (2001) Recent trends in hydrogels based on Starchgraft-acrylic acid: a review. Starch-Starke 3:7–13

    Google Scholar 

  40. Buchholz FL (1994) Recent advances in superabsorbent polyacrylates. Trends Polym Sci 2:277–281

    CAS  Google Scholar 

  41. Dayal U, Mehta SK, Choudhary MS et al (1999) Synthesis of acrylic Superabsorbents. Rev Macromol Chem Phys 39(3):507–525

    Google Scholar 

  42. Po R (1994) Water-absorbent polymers: a patent survey. J Macromol Sci C: Polym Rev 34(4):607–662

    Google Scholar 

  43. Chin Y R, Al Dayel A. No. 85–1-2, Stanford Research Institute, SRI International, 1985

  44. Buchholz F L, Graham A T. Modern superabsorbent polymer technology. John! Wiley & Sons, Inc, 605 Third Ave, New York, NY 10016, USA, 1998. 279

  45. Absorbent polymer technology. Elsevier, 2012

  46. Wu J H, Lin J M, Wei Y L. High water absorbent and water retaining material. 2005

  47. Chatterjee, Pronoy K, Bhupender S. Elsevier, 2002, 13

  48. Dhodarkar R, Borde P, Nandy T (2009) Super absorbent polymers in environmental remediation. Global Nest J 11(2):223–234

    Google Scholar 

  49. Ma JZ, Li XL, B Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757

    CAS  Google Scholar 

  50. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer Hydrogels: A Review. Polym-Plast Technol 50(14):1475–1486

    CAS  Google Scholar 

  51. Jayaramudu T, Li Y, Ko HU et al (2016) Poly(acrylic acid)-poly(vinyl alcohol) hydrogels for reconfigurable lens actuators. Int J Precis Eng and Man 3(4):375–379

    Google Scholar 

  52. Rabat NE, Hashim S, Majid RA, Rabat NE, Hashim S, Majid RA (2014) Effect of oil palm empty fruit bunch-grafted-poly(acrylic acid-co-acrylamide) hydrogel preparations on plant growth performance. Key Eng Mater 594:236–239

    Google Scholar 

  53. Zou W, Liu X, Yu L, Qiao D, Chen L, Liu H, Zhang N (2013) Synthesis and characterization of biodegradable starch-polyacrylamide graft copolymers using starches with different microstructures. J Polym Environ 21(2):359–365

    CAS  Google Scholar 

  54. Liu H, Yu M, Ma H, Wang Z, Li L, Li J (2014) Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric. Radiat Phys Chem 94:129–132

    CAS  Google Scholar 

  55. Soto D, Urdaneta J, Fernández-García M (2016) Heavy metal (Cd2+, Ni2+, Pb2+ and Ni2+) adsorption in aqueous solutions by oxidized starches. J Polym Environ 24(4):343–355

    CAS  Google Scholar 

  56. Ding X, Li L, Liu P, Zhang J, Zhou NL, Lu S, Wei SH, Shen J (2009) The preparation and properties of dextrin-graft-acrylic acid/montmorillonite superabsorbent nanocomposite. Polym Compos 30(7):976–981

    CAS  Google Scholar 

  57. Parvathy PC, Jyothi A (2014) Rheological and thermal properties of saponified cassava starch-\r g\r -poly(acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. J Appl Polym Sci 131(11):40368–40378

    Google Scholar 

  58. Kong W, Li Q, Liu J, Li X, Zhao L, Su Y, Yue Q, Gao B (2016) Adsorption behavior and mechanism of heavy metal ions by chicken feather protein-based semi-interpenetrating polymer networks super absorbent resin. RSC Adv 6(86):83234–83243

    CAS  Google Scholar 

  59. He M, Zhao Y, Duan J et al (1872-1878) Fast contact of solid–liquid Interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Inter 2014:6(3)

    Google Scholar 

  60. Halake KS, Lee J (2014) Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores. Carbohydr Polym 105:184–192

    CAS  PubMed  Google Scholar 

  61. Ge G, Zhang Y, Shao J, Wang W, Si W, Huang W, Dong X (2018) Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv Funct Mater 28(32):1802576

    Google Scholar 

  62. Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. Polym Eng Sci 4(4):315–362

    CAS  Google Scholar 

  63. Wang J, Wu W (2005) Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels. Eur Polym J 41(5):1143–1151

    CAS  Google Scholar 

  64. Floroiu RM, Davis AP, Torrents A (2001) Cadmium adsorption on aluminum oxide in the presence of Polyacrylic acid. Environ Sci Technol 35(2):348–353

    CAS  PubMed  Google Scholar 

  65. Montavon G, Rabung T, Geckeis H, Grambow B (2004) Interaction of Eu(III)/cm(III) with alumina-bound poly(acrylic acid): sorption, desorption, and spectroscopic studies. Environ Sci Technol 38(16):4312–4318

    CAS  PubMed  Google Scholar 

  66. Kamoun EA, Menzel H (2010) Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light-effect of concentration, coinitiator type, and solvent. J Appl Polym Sci 117(6):0

    CAS  Google Scholar 

  67. Yamagami M, Kamitakahara H, Yoshinaga A, Takano T (2018) Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues. Carbohydr Polym 183:110–122

    CAS  PubMed  Google Scholar 

  68. Shin BM, Kim JH, Chung DJ (2013) Synthesis of pH-responsive and adhesive super-absorbent hydrogel through bulk polymerization. Macromol Res 21(5):582–587

    CAS  Google Scholar 

  69. Sun S, Mao LB, Lei Z, Yu SH, Cölfen H (2016) Hydrogels from amorphous calcium carbonate and Polyacrylic acid: bio-inspired materials for mineral plastics. Angew Chem Int Edit 55(39):11765–11769

    CAS  Google Scholar 

  70. Lee WF, Wu RJ (1996) Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. J Appl Polym Sci 62(7):1099–1114

    CAS  Google Scholar 

  71. Morita S, Kitagawa K, Ozaki Y (2009) Vib. Hydrogen-bond structures in poly(2-hydroxyethyl methacrylate): infrared spectroscopy and quantum chemical calculations with model compounds. Spectrosc 51(1):28–33

    CAS  Google Scholar 

  72. Katiyar R, Bag DS, Nigam I (2014) Synthesis and evaluation of swelling characteristics of fullerene (C60) containing cross-linked poly (2-hydroxyethyl methacrylate) hydrogels. Advanced Materials Letter 5:214–222

    CAS  Google Scholar 

  73. Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78(4):731–737

    CAS  Google Scholar 

  74. Singh B, Chauhan GS, Kumar S, Chauhan N (2007) Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydr Polym 67(2):190–200

    CAS  Google Scholar 

  75. Xianglin Y, Jiehui W, Biyu Z et al (2016) Study on adsorption properties of Polyacrylic acid-acrylamide water absorbent resin for dyes. New Chem Mater 1:048

    Google Scholar 

  76. Xu S, Li H, Ding H et al (2019) Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr Polym 225:115214

    Google Scholar 

  77. Vieira JN, Posada JJ, Rezende RA, Sabino MA (2014) Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels. Mater Sci Eng C Mater Biol Appl 37(1):20–27

    CAS  PubMed  Google Scholar 

  78. Cheng S, Liu X, Zhen J, Lei Z (2019) Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr Polym 225:115214

    CAS  PubMed  Google Scholar 

  79. Abdullah M F, Ahmad A, Mat L A. Methylene blue removal by using pectin-based hydrogels extracted from dragon fruit peel waste using gamma and microwave radiation polymerization techniques. Journal of Biomaterials Science, Polymer Edition, 2018:1–28

  80. Mondal D, Ghosh SK, Banthia AK, Singha NK (2014) Preparation of poly(2-Hydroxyethyl methacrylate) microspheres bearing metronidazole, an antiprotozoal drug. Adv Sci Eng Medicine 6(6):637–641

    Google Scholar 

  81. Wang N, Xiao W, Niu B et al (2019) Experimental planning applied to the synthesis of superabsorbent polymer by acrylic acid graft in pectin extracted from passion fruit peel. J Mol Liq 6:9. https://doi.org/10.1088/2053-1591/ab332f

    Article  CAS  Google Scholar 

  82. Carmo Iago, Almeida Camila, Brandao Humberto,De Oliveira L F, Souza Nelson. Experimental planning applied to the synthesis of superabsorbent polymer by acrylic acid graft in pectin extracted from passion fruit peel . Materials Research Express, 2019(6)

  83. Zhang M , Lan G , Qiu H, et al. Preparation of ion exchange resin using soluble starch and acrylamide by graft polymerization and hydrolysis. Environmental Science and Pollution Research, 2018

  84. Mohammadzadeh Pakdel P, Peighambardoust SJ (2018) A review on acrylic based hydrogels and their applications in wastewater treatment. J Environ Manag 217:123–143

    CAS  Google Scholar 

  85. Saber-Samandari S, Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of cu (II) ions. React Funct Polym 73(11):1523–1530

    CAS  Google Scholar 

  86. Liu DH, Lv ZP, Jiang L (2011). Chem Eng 2:37–48

    CAS  Google Scholar 

  87. El-Mohdy HLA (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20(6):1–12

    Google Scholar 

  88. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48(3):407–409

    CAS  Google Scholar 

  89. Nho YC, Park JS, Lim YM (2014) Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for Mucoadhesives. Polymers-Basel 6(3):890–898

    Google Scholar 

  90. Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171

    CAS  Google Scholar 

  91. Zhang S, Wang W, Wang H, Qi W, Yue L, Ye Q (2014) Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydr Polym 101:798–803

    CAS  PubMed  Google Scholar 

  92. Abd El-Mohdy H L , Hegazy E A , El-Nesr E M , et al. Synthesis, characterization and properties of radiation-induced starch/(EG-co-MAA) hydrogels. Arab J Chem, 2012:S1878535212000901

  93. Salmawi K M E , El-Naggar A A , Ibrahim S M. Modeling and Optimization of the Injection-Molding Process: A Review. Advances in Polymer Technology, 2016:n/a-n/a

  94. Haroon M, Wang L, Yu H, Abbasi NM, Zain-ul-Abdin ZUA, Saleem M, Khan RU, Ullah RS, Chen Q, Wu J (2016) Chemical modification of starch and its application as an adsorbent material. RSC Adv 6(82):78264–78285

    CAS  Google Scholar 

  95. Bardajee GR, Pourjavadi A, Soleyman R (2009) Irradiation synthesis of biopolymer-based superabsorbent hydrogel: optimization using the Taguchi method and investigation of its swelling behavior. Adv Polym Technol 28(2):131–140

    CAS  Google Scholar 

  96. Hassan CM, Peppas NA (2000). Adv Polym Sci 153:3765

    Google Scholar 

  97. Guan Y, Bian J, Peng F, Zhang XM, Sun RC (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym 101:272–280

    CAS  PubMed  Google Scholar 

  98. Kuo SW, Lin CL, Wu HD, Chang FC (2003) Thermal property and hydrogen bonding in blends of poly (vinylphenol) and poly (hydroxylether of bisphenol a). J Polym Res 10(2):87–93

    CAS  Google Scholar 

  99. Zhong M, Shi FK, Liu YT, Liu XY, Xie XM (2016) Tough superabsorbent poly(acrylic acid) nanocomposite physical hydrogels fabricated by a dually cross-linked single network strategy. Chinese Chem Lett 27(3):312–316

    CAS  Google Scholar 

  100. Omidian H, Park K (2010) Introduction to hydrogels//biomedical applications of hydrogels handbook. Springer New York:1–16

  101. Vinogradov S N, Linnell R H. Hydrogen bonding. New York: Van Nostrand Reinhold, 1971.p 156

  102. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80(4):1028–1036

    CAS  Google Scholar 

  103. Boyaci T, Orakdogen N. Tuning the Synthetic Routes of Dimethylaminoethyl methacrylate-Based Superabsorbent Copolymer Hydrogels Containing Sulfonate Groups: Elasticity, Dynamic, and Equilibrium Swelling Properties. Adv Polym Tech, 2015:n/a-n/a

  104. Tang H, Chen H, Duan B, Lu A, Zhang L N, Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci, 2014, 49(5): 2235–2242

  105. Hu J, Wang X, Liu L, Wu L (2014) A facile and general fabrication method for organic silica hollow spheres and their excellent adsorption properties for heavy metal ions. J Mater Chem A 2(46):19771–19777

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wen, G. Development history and synthesis of super-absorbent polymers: a review. J Polym Res 27, 136 (2020). https://doi.org/10.1007/s10965-020-02097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02097-2

Keywords

Navigation