Skip to main content
Log in

Engineering of core@double-shell Mo@MoO3@PS particles in PVDF composites towards improved dielectric performances

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer composites with high dielectric permittivity (ε´) and breakdown strength (Eb), low loss, have significant applications in electronics device and electrical equipment. To harvest excellent integrated dielectric properties in molybdenum (Mo)/polyvinylidene fluoride (PVDF), in this study, raw Mo particles were calcined at high temperature to obtain molybdenum oxide (MoO3), followed by the encapsulation of a layer of polystyrene (PS) shell, and the fabricated core@double-shell structured Mo (Mo@MoO3@PS) particles were incorporated into PVDF. The measurement outcomes demonstrate the coexistence of the MoO3 and PS double shells on the surface of raw Mo particle. The first inorganic MoO3 interlayer massively suppresses the dielectric loss and leakage current of Mo/PVDF because it effectively prevents the direct contact between raw Mo particles. The second organic PS shell not only greatly strengthens the interfacial compatibility with PVDF thereby enhancing the fillers’ homogeneous dispersibility in the matrix, but also further suppresses the conductivity and loss, and improves the Eb of the composites owing to its high electrical resistivity. The PVDF with 40 wt% of Mo@MoO3@PS exhibits good comprehensive dielectric performances: ε′ of 100 and Eb of 7.89 kV/mm, loss factor of 0.058 at 100 Hz. Consequently, the obtained Mo@MoO3@PS/PVDF with concurrently high-ε′ and Eb but low loss shows promising potential applications in microelectronics and electrical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, [W.Y. Zhou], upon reasonable request.

References

  1. Li B, Polizos G, Manias E (2022) Interfacial effects on the dielectric properties of elastomer composites and composites. Dyn Compos Mater. Springer. Cham 225–249

  2. Li B, Randall CA, Manias E (2022) Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J Phys Chem C 126(17):7596–7604

    Article  CAS  Google Scholar 

  3. Li B, Sarkarat M, Baker A, Manias E, Randall CA (2021) Interfacial effects on the dielectric properties of elastomer/carbon-black/ceramic composites. MRS Adv 6(9):247–251

    Article  Google Scholar 

  4. Yuan MX, Zhang G, Li B, Chung TCM, Rajagopalan R, Lanagan MT (2020) Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. ACS Appl Mater Interfaces 12(12):14154–14164

    Article  CAS  PubMed  Google Scholar 

  5. Yuan MX, Li B, Zhang SH, Rajagopalan R, Lanagan MT (2020) High-Field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): structure-dielectric property relationship and implications for energy storage applications. ACS Appl Polym Mater 2(3):1356–1368

    Article  CAS  Google Scholar 

  6. Wang P, Zhang XM, Duan W, Teng W, Liu YB, Xie Q (2021) Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin J Chem 39(5):1153–1158

    Article  CAS  Google Scholar 

  7. Wang P, Li ZQ, Xie Q, Duan W, Zhang XC, Han HL (2021) A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J Bionic Eng 18(1):55–64

    Article  Google Scholar 

  8. Zha JW, Zheng MS, Fan BH, Dang ZM (2021) Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 89:1–20

    Article  Google Scholar 

  9. Zhao LH, Wei CM, Ren JW, Li YC, Zheng JJ, Jia LC, Wang Z, Jia SL (2022) Biomimetic nacreous composite films toward multipurpose application structured by aramid nanofibers and edge-hydroxylated boron nitride nanosheets. Ind Eng Chem Res 61(25):8881–8894

    Article  CAS  Google Scholar 

  10. Zhao LH, Wei CM, Li ZH, Wei WF, Jia LC, Huang XL, Ning WJ, Wang Z, Ren JW (2021) High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater Des 210:110124

    Article  CAS  Google Scholar 

  11. Zhao LH, Chen ZJ, Ren JW, Yang LY, Li YZ, Wang Z, Ning WJ, Jia SL (2022) Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. J Colloid Inter Sci 627:205–214

    Article  CAS  Google Scholar 

  12. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomater-Basel 11(8):1898

    Article  CAS  Google Scholar 

  13. Wang ZD, Meng GD, Wang LL, Tian LL, Chen SY, Wu GL, Kong B, Cheng YH (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11(1)

  14. Wang LL, Yang CX, Wang XY, Shen JY, Sun WJ, Wang JK, Yang GQ, Cheng YH, Wang ZD (2022) Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos Part A Appl Sci Manuf 107320

  15. Zhou WY, Kou YJ, Yuan MX, Li B, Cai HW, Li Z, Chen FX, Liu XR, Wang GH, Chen QG, Dang ZM (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos Sci Technol 181:107686

    Article  CAS  Google Scholar 

  16. Zhou WY, Li T, Yuan MX, Li B, Zhong SL, Li Z, Liu XR, Zhou JJ, Wang Y, Cai HW, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater 42:1–11

    Article  CAS  Google Scholar 

  17. Zhou WY, Cao GZ, Yuan MX, Zhong SL, Wang YD, Liu XR, Cao D, Peng WW, Liu J, Wang GH, Dang ZM, Li B (2022) Core–shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv Mater 2207829

  18. Zheng MS, Zhang C, Yang Y, Xing ZL, Chen X, Zhong SL, Dang ZM (2020) Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 3(3):94–98

    Article  Google Scholar 

  19. Zha JW, Yao SC, Qiu Y, Zheng SM, Dang ZM (2019) Enhanced dielectric properties and energy storage of the sandwich-structured poly (vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2:103–108

    Article  Google Scholar 

  20. Lu X, Deng W, Wei JD, Wan YH, Zhang JJ, Zhang L, Jin L, Cheng ZY (2021) Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos Part B 224

  21. Lu X, Deng W, Wei JD, Zhu YS, Ren PR, Wan YH, Yan FX, Jin L, Zhang L, Cheng ZY (2021) Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56(36):19983–19995

    Article  CAS  Google Scholar 

  22. Gao F, Mei B, Xu XY, Ren JH, Zhao DC, Zhang Z, Wang ZL, Wu YT, Liu X, Zhang Y (2022) Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem Eng J 448:137742

    Article  CAS  Google Scholar 

  23. Zhao DC, Zhang Z, Ren JH, Xu YY, Xu XY, Zhou J, Gao F, Tang H, Liu SP, Wang ZL, Wang D, Wu YT, Liu X, Zhang Y (2023) Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem Eng J 451:138882

    Article  CAS  Google Scholar 

  24. Zhao DC, Jiang S, Yu S, Ren JH, Zhang Z, Liu SP, Liu X, Wang ZL, Wu YT, Zhang Y (2023) Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201:864–870

    Article  CAS  Google Scholar 

  25. Wang Y, Zhu LJ, Zhou J, Jia BB, Jiang YY, Wang JK, Wang ML, Cheng YH, Wu K (2019) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core-shell particles. Polym Bull 76(8):3957–3970

    Article  CAS  Google Scholar 

  26. Bouharras FE, Raihane M, Ameduri B (2020) Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications. Prog Mater Sci 113:100670

    Article  CAS  Google Scholar 

  27. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11(8)

  28. Cao D, Zhou WY, Yuan MX, Li B, Li T, Li J, Liu DF, Wang GH, Zhou JJ, Zhang HF (2022) Polymer composites filled with core-shell structured nanofillers: effects of shell thickness on dielectric and thermal properties of composites. J Mater Sci Mater Electron 33(8):5174–5189

    Article  CAS  Google Scholar 

  29. Jia LC, Jin YF, Ren JW, Zhao LH, Yan DX, Li ZM (2021) Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J Mater Chem C 9(8):2904–2911

    Article  CAS  Google Scholar 

  30. Bai P, Wang SJ, Jia JJ, Wang HX, Yang W (2021) Effect of BaTiO3 nanowire on effective permittivity of the PVDF composites. AIP Adv 11(4)

  31. Zhou WY, Zhang F, Yuan MX, Li B, Peng JD, Lv YQ, Cai HW, Liu XR, Chen QG, Dang ZM (2019) Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles. J Mater Sci Mater Electron 30(20):18350–18361

    Article  CAS  Google Scholar 

  32. Li T, Zhou WY, Li Y, Cao D, Wu HJ, Liu DF, Wang Y, Cao GZ, Dang ZM (2021) Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. J Mater Sci Mater Electron 32(11):14764–14779

    Article  CAS  Google Scholar 

  33. Zhou JJ, Zhou WY, Cao D, Zhang CH, Peng WW, Yao T, Zuo J, Cai JT, Li Y (2022) PVDF reinforced with core-shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. J Polym Res 29(3)

  34. Jiang YC, Zhang Z, Zhou Z, Yang H, Zhang QL (2019) Enhanced dielectric performance of P(VDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers. Polymers 10(11)

  35. Omar H, Smales GJ, Henning S, Li Z, Wang DY, Schönhals A, Szymoniak P (2021) Calorimetric and dielectric investigations of epoxy-based nanocomposites with halloysite nanotubes as nanofillers. Polymers 13(10)

  36. Li T, Zhou WY, Li Y, Cao D, Wang Y, Cao GZ, Liu XR, Cai HW, Dang ZM (2021) Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with core-shell structured Ni@SiO2. J Mater Sci Mater Electron 32:4076–4089

    Article  CAS  Google Scholar 

  37. Feng MN, Chen M, Qiu J, HeM HYM, Lin J (2021) Improving dielectric properties of poly (arylene ether nitrile) composites by employing core-shell structured BaTiO3@polydopamine and MoS2@polydopamine interlinked with poly (ethylene imine) for high-temperature applications. J Alloy Compd 856:158213

    Article  CAS  Google Scholar 

  38. Feng MJ, Zhang CH, Zhou GT, Zhang TD, Feng Y, Chi QG, Lei QQ (2020) Enhanced energy storage characteristics in PVDF-based nanodielectrics with core-shell structured and optimized shape fillers. IEEE Access 8:81542–81550

    Article  Google Scholar 

  39. Li JP, Jiang JH, Cheng Q, Cui ZK, Liu XY, Zuo PY, Zhuang QX (2022) Construction of a flexible 1D core–shell Al2O3@NaNbO3 nanowire/poly (p-phenylene benzobisoxazole) nanocomposite with stable and enhanced dielectric properties in an ultra-wide temperature range. J Mater Chem C 10(2):716–725

    Article  CAS  Google Scholar 

  40. Wu ZC, Cheng HW, Jin C, Yang BT, Xu CY, Pei K, Zhang HB, Yang ZQ, Che RC (2022) Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater 34(11):2107538

    Article  CAS  Google Scholar 

  41. Akouibaa A, Masrour R, Jabar A, Benhamou M, Derouiche A (2022) Optical and dielectric properties of plasmonic core-shell nanoparticles: Fe2O3/Au and Fe3O4/Au. J Cluster Sci 33(5):2139–2146

    Article  CAS  Google Scholar 

  42. Awais M, Chen XR, Hong ZL, Wang QL, Shi YW, Meng FB, Dai C, Paramane A (2022) Synergistic effects of Micro-hBN and core-shell Nano-TiO2@SiO2 on thermal and electrical properties of epoxy at high frequencies and temperatures. Compos. Sci. Technol. 109576.

  43. Silakaew K, Thongbai P (2022) Continually enhanced dielectric constant of Poly (vinylidene fluoride) with BaTiO3@Poly (vinylidene fluoride) core-shell nanostructure filling. Ceram Int 48(5):7005–7012

    Article  CAS  Google Scholar 

  44. Xia L, Wang XH, Ren TT, Luo LL, Li DX, Dai JG, Xu YT, Yuan CH, Zeng BR, Dai LZ (2022) Green construction of multi-functional fire resistant epoxy resins based on boron nitride with core-shell structure. Polym Degrad Stabil 203:110059

    Article  CAS  Google Scholar 

  45. Peng MY, Li K, Huang BL, Cheng J (2022) Polyimide composites containing core shell particles with high dielectric constant and low dielectric loss. High Perform Polym 34(4):388–396

    Article  CAS  Google Scholar 

  46. Celebi H, Duran S, Dogan A (2022) The effect of core-shell BaTiO3@SiO2 on the mechanical and dielectric properties of PVDF composites. Polym-Plast. Tech. Mat. 1–13.

  47. Zhou JJ, Wang XY, Ge KY, Yang ZY, Li HQ, Guo CF, Wang JY, Shan Q, Xia L (2022) Core-shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption. J Colloid Interf Sci 607:881–889

    Article  CAS  Google Scholar 

  48. Hu J, Liu Y, Zhang SF, Tang BT (2022) Novel designed core-shell nanofibers constituted by single element-doped BaTiO3 for high-energy-density polymer nanocomposites. Chem Eng J 428:131046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 52277028, 51937007), Shaanxi Provincial Natural Science Foundation of China (No.2022JM-186), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou or Mengxue Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhou, W., Zhou, J. et al. Engineering of core@double-shell Mo@MoO3@PS particles in PVDF composites towards improved dielectric performances. J Polym Res 30, 112 (2023). https://doi.org/10.1007/s10965-023-03494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03494-z

Keywords

Navigation