Skip to main content
Log in

Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polymer dielectrics with super dielectric constant (ε'), low loss as well as high thermal conductivity (TC) are gaining tremendous momentum owing to the ever-increasing demands on microelectronic devices. Introduction core–shell fillers into polymers has been demonstrated as a promising strategy for high-ε' but low loss. Herein, nickel (Ni) particles were encapsulated by an insulating layer of NiO with various thicknesses via controlling calcination times at 550 °C under air, and the as-prepared core–shell Ni@NiO was incorporated into poly(vinyli-dene fluoride) (PVDF). The results verify the formation of a NiO shell outside of the Ni, and manifest that the PVDF with Ni@NiO particles exhibit a high ε', a signally suppressive loss and conductivity, as well as a high-TC compared with raw Ni. The reason can be ascribed to multiple effects of NiO interlayer including the enhancement of interface compatibility and interface polarizations and the blocking of leakage current. Furthermore, the thickness of NiO shell exerts different influences on long-range and short-range charge migration, and it should be rationally tuned to optimize the dielectric properties and TC. This study provides an effective idea to regulate and control the dielectric properties and TC of polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Yang, Z.Y. Li, W.J. Ji, C.X. Sun, H. Deng, Q. Fu, Compos. A Appl. Sci. Manuf. 104, 24–31 (2018)

    Article  CAS  Google Scholar 

  2. X. Huang, Z. Zhou, G.X. Chen, Q.F. Li, Chem. Phys. Lett. 711, 173–177 (2018)

    Article  CAS  Google Scholar 

  3. Y.T. Guo, K.N. Zhang, N. Meng, W.L. Wu, Y.J. Wang, J. Xu, E. Pawlikowska, M. Szafran, F. Gao, IET Nanodielectr. 2(4), 135–141 (2019)

    Article  Google Scholar 

  4. M.X. Yuan, B. Li, S.H. Zhang, R. Rajagopalan, M.T. Lanagan, A.C.S. Appli, Polym. Mater. 2(3), 1356–1368 (2020)

    CAS  Google Scholar 

  5. D. An, S.S. Cheng, Z.Y. Zhang, C. Jiang, H.M. Fang, J.X. Li, Y.Q. Liu, C.P. Wong, Carbon 155, 258–267 (2019)

    Article  CAS  Google Scholar 

  6. Y. Zhang, C.H. Zhang, Y. Feng, T.D. Zhang, Q.G. Chen, Q.G. Chi, L.Z. Liu, X. Wang, Q.Q. Lei, Nano Energy 66, 104195 (2019)

    Article  CAS  Google Scholar 

  7. M.X. Yuan, G. Zhang, B. Li, T.C. Mike Chung, R. Rajagopalan, M.T. Lanagan, ACS Appl. Mater. Interfaces 12(12), 14154–14164 (2020)

    Article  CAS  Google Scholar 

  8. P. Wang, B. Sun, Y. Liang, H.L. Han, X.L. Fan, W.L. Wang, Z. Yang, J. Mater. Chem. A. 6, 10404–10410 (2018)

    Article  CAS  Google Scholar 

  9. M. Hamidinejad, B. Zhao, R.K.M. Chu, N. Moghimian, H.E. Naguib, T. Filleter, C.B. Park, MACS Appl. Mater. Interfaces. 10, 19987–19998 (2018)

    Article  CAS  Google Scholar 

  10. K. Silakaew, P. Thongbai, RSC Adv. 9, 23498 (2019)

    Article  CAS  Google Scholar 

  11. W.M. Xia, J.H. Zhou, T.L. Hu, P.G. Ren, G.J. Zhu, Y.L. Yin, J.L. Li, Z.C. Zhang, Compos. A Appl. Sci. Manuf. 131, 105805 (2020)

    Article  CAS  Google Scholar 

  12. H. Luo, X.F. Zhou, C. Ellingford, Y. Zhang, S. Chen, K.C. Zhou, D. Zhang, C.R. Bowen, C.Y. Wan, Chem. Soc. Rev. 48, 4424 (2019)

    Article  CAS  Google Scholar 

  13. W.Y. Zhou, X. Li, F. Zhang, C.H. Zhang, Z. Li, F.X. Chen, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Compos. A Appl. Sci. Manuf. 137, 106021 (2020)

    Article  CAS  Google Scholar 

  14. Z.H. Chen, H.F. Li, G.Y. Xie, K. Yang, RSC Adv. 8, 1 (2018)

    Article  Google Scholar 

  15. R. Zafar, N, Gupta. IET Nanodielectr. 3(2), 53–61 (2020)

    Article  Google Scholar 

  16. C. Yang, X. Xie, Y. Lu, X.D. Qi, Y.Z. Lei, J.H. Yang, Y. Wang, J. Phys. Chem. C. 124, 12883–12896 (2020)

    Article  CAS  Google Scholar 

  17. F. Liang, L. Zhang, W.Z. Lu, Q.X. Wan, C.F. Fan, Appl. Phys. Lett. 108(7), 072902 (2016)

    Article  Google Scholar 

  18. J.M. Mathews, B. Santhosh, S.S. Vaisakh, S. Ananthakumar, Mater. Today: Proc. 25, 155–162 (2020)

    CAS  Google Scholar 

  19. W.Y. Zhou, F. Zhang, M.X. Yuan, B. Li, J.D. Peng, Y.Q. Lv, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles. Mater. Electron. 30, 18350–18361 (2019)

    Article  CAS  Google Scholar 

  20. W.Y. Zhou, Y. Gong, L.T. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J. Alloys Compd. 693, 1–8 (2017)

    Article  CAS  Google Scholar 

  21. S.Y. Chen, Y.H. Cheng, Q. Xie, B. Xiao, Z.D. Wang, J.Y. Liu, G.L. Wu, Compos. Part A 120(84), 94 (2019)

    Google Scholar 

  22. P. Dhatarwal, S. Choudhary, R.J. Sengwa, Mater. Lett. 273, 127913 (2020)

    Article  CAS  Google Scholar 

  23. J.X. Zhang, J.C. Ma, L.Q. Zhang, C.Y. Zong, A.H. Xu, Y.B. Zhang, B. Geng, S.X. Zhang, RSC Adv. 10, 7065 (2020)

    Article  Google Scholar 

  24. J. Zhang, F.W. Zhao, Y.J. Zuo, Y.J. Zhang, X.M. Chen, B. Li, N. Zhang, G. Niu, W. Ren, Z.G. Ye, Compos. Sci. Technol. 200, 108393 (2020)

    Article  CAS  Google Scholar 

  25. W. Xia, Z.C. Zhang, IET Nanodielectr. 1, 17–31 (2018)

    Article  Google Scholar 

  26. W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai, Z. Li, F.X. Chen, X.R. Liu, G.H. Wang, Q.G. Chen, Z.M. Dang, Compos. Sci. Technol. 181, 107686 (2019)

    Article  CAS  Google Scholar 

  27. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Compos. Part B. 173, 106957 (2019)

    Article  CAS  Google Scholar 

  28. A.K. Jonscher, Phys. D Appl. phys. 32, 57–70 (1983)

    Article  Google Scholar 

  29. Y.P. Liu, J.C. Shi, P. Kang, P. Wu, Z. Zhou, G.X. Chen, Polymer 188, 122157 (2020)

    Article  CAS  Google Scholar 

  30. W. Wan, M.Z. Tao, H.L. Cao, Y.Q. Zhao, J.R. Luo, J. Yang, T. Qiu, Ceram. Int. 46(9), 13862–13868 (2020)

    Article  CAS  Google Scholar 

  31. Y. Zhou, H. Luo, S. Chen, X.H. Han, D. Zhang, IET Nanodielectr. 2(4), 142–150 (2019)

    Article  Google Scholar 

  32. P. Dhatarwal, R.J. Sengwa, S. Choudhary, Optik 221, 165368 (2020)

    Article  CAS  Google Scholar 

  33. G. Onsal, G. Kocakulah, A. Kahyaoglu, O. Koysa, J. Mol. Liq. 284, 607–615 (2019)

    Article  CAS  Google Scholar 

  34. X.Z. Chen, F. Liang, W.Z. Lu, Y.F. Zhao, G.F. Fan, X.C. Wang, Appl. Phys. Lett. 112, 162902 (2018)

    Article  Google Scholar 

  35. L.H. Zhao, L. Yan, C.M. Wei, Q.H. Li, X.L. Huang, Z.L. Wang, M.L. Fu, J.W. Ren, J. Phys. Chem. C 124(23), 12723–12733 (2020)

    Article  CAS  Google Scholar 

  36. W.Y. Zhou, Y. Zhang, J.J. Wang, H. Li, W.H. Xu, B. Li, L.Q. Chen, Q. Wang, MACS Appl. Mater. Interfaces 12, 46767–46778 (2020)

    Article  CAS  Google Scholar 

  37. Y.G. Ouyang, F. Ding, L.Y. Bai, X.F. Li, G.L. Hou, J.M. Fan, F.L. Yuan, Compos. A Appl. Sci. Manuf. 128, 105673 (2020)

    Article  CAS  Google Scholar 

  38. J.W. Ren, Q.H. Li, L. Yan, L.C. Jia, X.L. Huang, L.H. Zhao, Q.C. Ran, M.L. Fu, Mater. Des. 191, 108663 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51937007, 51903207 and 51577154), and the Analytic Instrumentation Center of XUST.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Authors are responsible for correctness of the statements provided in the manuscript. See also Authorship Principles. The Editor-in-Chief reserves the right to reject submissions that do not meet the guidelines described in this section.

Corresponding authors

Correspondence to Wenying Zhou or Zhi-Min Dang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhou, W., Li, Y. et al. Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. J Mater Sci: Mater Electron 32, 14764–14779 (2021). https://doi.org/10.1007/s10854-021-06031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06031-0

Navigation