Skip to main content

Advertisement

Log in

Synthesis of robust and self-healing polyurethane/halloysite coating via in-situ polymerization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Due to the outstanding properties comprised of thermal, anti-corrosion and excellent processing properties, the polyurethane coating has received attention from many researchers. However, absence of self-healing capacity limited their applications. In the present work, a self-healing polyurethane (PU) was developed for protective coating via Diels–Alder reaction. Moreover, incorporation of Halloysite nanotubes (HNTs) by in situ polymerization method in the PU enhances the mechanical properties. The macro- and micro-mechanical properties of materials were investigated by tensile and nanoindentation measurement, these results show the composites displayed higher tensile strength (34.2 MPa) and hardness (5.13 MPa) in comparison with pure PU (22.9 MPa and 4.24 MPa). The tensile and POM results indicated that the PU and composites have excellent self-healing property. The simulative salt spray tests indicated the coating possessed an excellent corrosion protection property. Therefore, this work is promising for the self-healing ability protective polymer coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar A, Meena MK (2021) Fabrication of durable corrosion-resistant polyurethane/SiO 2 nanoparticle composite coating on aluminium. Colloid Polym Sci 299:915–924

    Article  CAS  Google Scholar 

  2. Meng D, Liu X, Wang S, Sun J, Li H, Wang Z et al (2021) Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property. Compos Part B Eng 219:108886

    Article  CAS  Google Scholar 

  3. Yang H, Zhang M, Chen R, Liu Q, Liu J, Yu J, Wang J (2021) Polyurethane coating with heterogeneity structure induced by microphase separation: a new combination of antifouling and cavitation erosion resistance. Prog Org Coat 151:106032

    Article  CAS  Google Scholar 

  4. Cai G, Hou J, Jiang D, Dong Z (2018) Polydopamine-wrapped carbon nanotubes to improve the corrosion barrier of polyurethane coating. RSC Adv 8(42):23727–23741

    Article  CAS  Google Scholar 

  5. Mousa HM, Abdal-Hay A, Bartnikowski M, Mohamed IM, Yasin AS, Ivanovski S, Kim CS (2018) A multifunctional zinc oxide/poly (lactic acid) nanocomposite layer coated on magnesium alloys for controlled degradation and antibacterial function. ACS Biomater Sci Eng 4(6):2169–2180

    Article  CAS  Google Scholar 

  6. Yuan D, Bonab VS, Patel A, Manas-Zloczower I (2018) Self-healing epoxy coatings with enhanced properties and facile processability. Polymer 147:196–201

    Article  CAS  Google Scholar 

  7. Samadzadeh M, Boura SH, Peikari M, Kasiriha SM, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68(3):159–164

    Article  CAS  Google Scholar 

  8. Yuan AQ, Wu B, Wang Y, Zhao YY, Liu QF, Lei JX (2020) Recyclable solid-solid phase-change materials cross-linked by reversible oxime carbamate bonds for solar energy storage. Inte J Energ Res 44(11):9185–9193

    Article  CAS  Google Scholar 

  9. Nardeli JV, Fugivara CS, Taryba M, Montemor MF, Benedetti AV (2021) Biobased self-healing polyurethane coating with Zn micro-flakes for corrosion protection of AA7475. Chem Eng J 404:126478

    Article  CAS  Google Scholar 

  10. Cheng KC, Huang CF, Wei Y, Hsu SH (2019) Novel chitosan-cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Mater 11(1):1–17

    Article  Google Scholar 

  11. Kang JH, Jeffrey B-H, Tok Bao ZN (2019) Self-healing soft electronics. Nat Electron 2(4):144–150

    Article  Google Scholar 

  12. Shchukina E, Wang H, Shchukin DG (2019) Nanocontainer-based self-healing coatings: current progress and future perspectives. Chem Commun 55(27):3859–3867

    Article  CAS  Google Scholar 

  13. Sun D, Yan Z, Mingzhang L, Ziming W, Suping C, Jinglei Y (2021) Robust and impermeable metal shell microcapsules for one-component self-healing coatings. Appl Surf Sci 546:149114

    Article  CAS  Google Scholar 

  14. Van Belleghem B, Kessler S, Van den Heede P, Van Tittelboom K, De Belie N (2018) Chloride induced reinforcement corrosion behavior in self-healing concrete with encapsulated polyurethane. Cement Concrete Res 113:130–139

    Article  Google Scholar 

  15. Li Z, Shan Y, Wang X, Li H, Yang K, Cui Y (2020) Self-healing flexible sensor based on metal-ligand coordination. Chem Eng J 394:124932

    Article  CAS  Google Scholar 

  16. Xiao L, Shi J, Wu K, Lu M (2020) Self-healing supramolecular waterborne polyurethane based on host-guest interactions and multiple hydrogen bonds. React Funct Polym 148:104482

    Article  CAS  Google Scholar 

  17. Nardeli JV, Fugivara CS, Taryba M, Montemor MF, Benedetti AV (2020) Self-healing ability based on hydrogen bonds in organic coatings for corrosion protection of AA1200. Corros Sci 177:108984

    Article  CAS  Google Scholar 

  18. Fu G, Yuan L, Liang G, Gu A (2016) Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J Mater Chem A 4(11):4232–4241

    Article  CAS  Google Scholar 

  19. Chang K, Jia H, Gu SY (2019) A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur Polym J 112:822–831

    Article  CAS  Google Scholar 

  20. Peng YJ, He X, Wu Q, Sun PC, Wang CJ, Liu XZ (2018) A new recyclable crosslinked polymer combined polyurethane and epoxy resin. Polymer 149:154–163

    Article  CAS  Google Scholar 

  21. Urdl K, Weiss S, Christöfl P, Kandelbauer A, Müller U, Kern W (2020) Diels-Alder modified self-healing melamine resin. Eur Polym J 127:109601

    Article  Google Scholar 

  22. Chen J, Luo K, Zhu J, Yu J, Wang Y, Hu Z (2019) Reversibly cross-linked fullerene/polyamide composites based on Diels-Alder reaction. Compos Sci Technol 176:9–16

    Article  CAS  Google Scholar 

  23. Zhou M, Yan Q, Fu Q, Fu H (2020) Self-healable ZnO@ multiwalled carbon nanotubes (MWCNTs)/DA-PDMS nanocomposite via Diels-Alder chemistry as microwave absorber: a novel multifunctional material. Carbon 169:235–247

    Article  CAS  Google Scholar 

  24. Hu D, Zhong B, Jia Z, Lin J, Liu M, Luo Y, Jia D (2017) A novel hybrid filler of halloysite nanotubes/silica fabricated by electrostatic self-assembly. Mater Lett 188:327–330

    Article  CAS  Google Scholar 

  25. Jiang X, Tian M, Lei Y, Li T (2020) Fabrication of colorful wear-resistant superhydrophobic coatings based on chemical modified halloysite. Colloid Surf A 602:125117

    Article  CAS  Google Scholar 

  26. Lin C, Ge H, Wang T, Huang M, Ying P, Zhang P, Levchenko V (2020) A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. Polymer 206:122894

    Article  CAS  Google Scholar 

  27. Shi L, Song G, Li P, Li X, Pan D, Huang Y, Guo Z (2021) Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole. Compos Sci Technol 201:108522

    Article  CAS  Google Scholar 

  28. Lin CH, Shen DK, Liu XD, Xu SB, Ji FC, Dong L, Zhou Y, Yang YM (2018) NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels-Alder reaction. Polymer 140:150–157

    Article  CAS  Google Scholar 

  29. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1(5):510–513

    Article  CAS  Google Scholar 

  30. Maleki A, Hajizadeh Z (2019) Magnetic aluminosilicate nanoclay: a natural and efficient nanocatalyst for the green synthesis of 4 H-pyran derivatives. Silicon 11(6):2789–2798

    Article  CAS  Google Scholar 

  31. Min YQ, Huang SY, Wang YX, Zhang ZJ, Du BY, Zhang XH, Fan ZQ (2015) Sonochemical transformation of epoxy-amine thermoset into soluble and reusable polymers. Macromolecules 48(2):316–322

    Article  CAS  Google Scholar 

  32. Wang D, Li H, Li M, Jiang H, Xia M, Zhou Z (2013) Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. J Mater Chem C 1(15):2744–2749

    Article  CAS  Google Scholar 

  33. Wang TL, Hsieh TH (1997) Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polym Degrad Stab 55(1):95–102

    Article  CAS  Google Scholar 

  34. Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plasticity 27:887–901

    Article  CAS  Google Scholar 

  35. Roy A, Mu LW, Shi YJ (2020) Tribological properties of polyimide-graphene composite coatings at elevated temperatures. Prog Org Coat 142:105602

    Article  CAS  Google Scholar 

  36. Arsecularatne JA, Colusso E, Della Gaspera E, Martucci A, Hoffman MJ (2020) Nanomechanical and tribological characterization of silk and silk-titanate composite coatings. Tribol Int 146:106195

    Article  CAS  Google Scholar 

  37. Shokrieh MM, Hosseinkhani MR, Naimi-Jamal MR, Tourani HJPT (2013) Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym Test 32(1):45–51

    Article  CAS  Google Scholar 

  38. Legocka I, Wierzbicka E, Al-Zahari T, Osawaru O (2011) Modified halloysite as a filler for epoxy resins. Pol J Chem Technol 13(3):47–52

    Article  Google Scholar 

  39. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  40. Ou YX, Chen H, Li ZY, Lin J, Pan W, Lei MK (2018) Microstructure and tribological behavior of TiAlSiN coatings deposited by deep oscillation magnetron sputtering. J Am Ceram Soc 101(11):5166–5176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Plan of China (Grant No. 2018YFB1107305), Zhejiang Provincial Public Welfare Technology Application Research Project, China (Grant No. LGC20E010003), Zhejiang Provincial Natural Science Foundation, China (Grant No. LTZ20E020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Puyou Ying or Vladimir Levchenko.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Ying, P., Huang, M. et al. Synthesis of robust and self-healing polyurethane/halloysite coating via in-situ polymerization. J Polym Res 28, 375 (2021). https://doi.org/10.1007/s10965-021-02742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02742-4

Keywords

Navigation