Skip to main content
Log in

Emerging research trends in the field of polyurethane and its nanocomposites: Chemistry, Synthesis, Characterization, Application in coatings and Future perspectives

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polyurethane (PU) coatings are widely used in various industries due to their excellent mechanical strength, along with abrasion, chemical and weather resistance. Recently, use of dynamic bonds to increase the recyclability and self-healing properties of PU is being extensively explored. Incorporation of nanofillers into the PU matrix can further enhance their performance as a coating matrix for application demanding thermal stability, mechanical strength, abrasion resistance, corrosion resistance, foul resistance, smudge resistance and UV resistance. It has been reported that inclusion of nanofillers, like nano-silica, graphene, organoclay, zinc oxide and titanium dioxide can provide enhanced functionalities to the PU matrix owing to their small size and high surface area-to-volume ratio to design tailor made PU coatings with desired properties. This review highlights the classification of PUs based on different dynamic chemistry for imparting self-healing and recyclability properties to the polymer matrix. Further, it will also provide a detailed insight regarding various polyol sources used for the synthesis of PUs, technologies adopted to incorporate nanofillers into the PU matrix for developing PU nanocomposite for coating applications and properties associated with these coatings. A brief conclusion highlighting the present challenges and future prospects of the PU nanocomposite coatings is also presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rafiee, Z, Keshavarz, V, “Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites.” Prog. Org. Coat., 86 190–193 (2015)

    CAS  Google Scholar 

  2. Prisacariu, C, Polyurethane Elastomers: From Morphology to Mechanical Aspects. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  3. Chattopadhyay, DK, Raju, K, “Structural engineering of polyurethane coatings for high performance applications.” Prog. Polym. Sci., 32 (3) 352–418 (2007)

    CAS  Google Scholar 

  4. Gite, V, Kulkarni, R, Hundiwale, D, Kapadi, U, “Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils.” Surf. Coat. Int. Part B, 2 (89) 117–122 (2006)

    Google Scholar 

  5. Meshram, PD, Puri, RG, Patil, AL, Gite, VV, “High performance moisture cured poly(ether–urethane) amide coatings based on renewable resource (cottonseed oil).” J. Coat. Technol. Res., 10 331–338 (2013)

    CAS  Google Scholar 

  6. Zlatanić, A, Lava, C, Zhang, W, Petrović, ZS, “Effect of structure on properties of polyols and polyurethanes based on different vegetable oils.” J. Polym. Sci. Part B Polym. Phys., 42 (5) 809–819 (2004)

    Google Scholar 

  7. Charlon, M, Heinrich, B, Matter, Y, Couzigné, E, Donnio, B, Avérous, L, “Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols.” Eur. Polym. J., 61 197–205 (2014)

    CAS  Google Scholar 

  8. Sun, Z, Fan, H, Chen, Y, Huang, J, “Synthesis of self-matting waterborne polyurethane coatings with excellent transmittance.” Polym. Int., 67 (1) 78–84 (2018)

    CAS  Google Scholar 

  9. Jena, KK, Sahoo, S, Narayan, R, Aminabhavi, TM, Raju, K, “Novel hyperbranched waterborne polyurethane-urea/nano-silica hybrid coatings and their characterizations.” Polym. Int., 60 (10) 1504–1513 (2011)

    CAS  Google Scholar 

  10. Naderizadeh, S, Athanassiou, A, Bayer, IS, “Interfacing superhydrophobic nano-silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.” J. Colloid Interface Sci., 519 285–295 (2018)

    CAS  Google Scholar 

  11. Cakić, SM, Ristić, IS, Stojiljković, DT, Nikolić, NN, Todorović, BŽ, Radosavljević-Stevanović, NV, “Effect of the nano-silica nanofiller on the properties of castor oil-based waterborne polyurethane hybrid dispersions based on recycled PET waste.” Polym. Bull., 76 1217–1238 (2019)

    Google Scholar 

  12. Xue, F, Jia, D, Li, Y, Jing, X, “Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating.” J. Mater. Chem. A, 3 (26) 13856–13863 (2015)

    CAS  Google Scholar 

  13. Fan, W, Du, W, Li, Z, Dan, N, Huang, J, “Abrasion resistance of waterborne polyurethane films incorporated with PU/nano-silica hybrids.” Prog. Org. Coat., 86 125–133 (2015)

    CAS  Google Scholar 

  14. Kale, MB, Luo, Z, Zhang, X, Dhamodharan, D, Divakaran, N, Mubarak, S, Wu, L, Xu, Y, “Waterborne polyurethane/graphene oxide-nano-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing.” Polymer, 170 43–53 (2019)

    CAS  Google Scholar 

  15. Mo, M, Zhao, W, Chen, Z, Yu, Q, Zeng, Z, Wu, X, Xue, Q, “Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets.” RSC Adv., 5 (70) 56486–56497 (2015)

    CAS  Google Scholar 

  16. Mo, M, Zhao, W, Chen, Z, Liu, E, Xue, Q, “Corrosion inhibition of functional graphene reinforced polyurethane nanocomposite coatings with regular textures.” RSC Adv., 6 (10) 7780–7790 (2016)

    CAS  Google Scholar 

  17. Li, J, Cui, J, Yang, J, Li, Y, Qiu, H, Yang, J, “Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings.” Compos. Sci. Technol., 129 30–37 (2016)

    CAS  Google Scholar 

  18. Bai, T, Lv, L, Du, W, Fang, W, Wang, Y, “Improving the tribological and anticorrosion performance of waterborne polyurethane coating by the synergistic effect between modified graphene oxide and polytetrafluoroethylene.” Nanomaterials, 10 (1) 137 (2020)

    CAS  Google Scholar 

  19. Wen, J-G, Geng, W, Geng, H-Z, Zhao, H, Jing, L-C, Yuan, X-T, Tian, Y, Wang, T, Ning, Y-J, Wu, L, “Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets.” ACS Omega, 4 (23) 20265–20274 (2019)

    CAS  Google Scholar 

  20. Yang, L, Phua, SL, Toh, CL, Zhang, L, Ling, H, Chang, M, Zhou, D, Dong, Y, Lu, X, “Polydopamine-coated graphene as multifunctional nanofillers in polyurethane.” RSC Adv., 3 (18) 6377–6385 (2013)

    CAS  Google Scholar 

  21. Christopher, G, Kulandainathan, MA, Harichandran, G, “Biopolymers nanocomposite for material protection: enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings.” Prog. Org. Coat., 99 91–102 (2016)

    CAS  Google Scholar 

  22. Zhang, J, Li, Y, Hu, C, Huang, W, Su, L, “Anti-corrosive properties of waterborne polyurethane/poly(o-toluidine)-ZnO coatings in NaCl solution.” J. Adhes. Sci. Technol., 33 (10) 1047–1065 (2019)

    CAS  Google Scholar 

  23. Pavličević, J, Špírková, M, Bera, O, Jovičić, M, Pilić, B, Baloš, S, Budinski-Simendić, J, “The influence of ZnO NPs on thermal and mechanical behavior of polycarbonate-based polyurethane composites.” Compos. Part B Eng., 60 673–679 (2014)

    Google Scholar 

  24. Steele, A, Bayer, I, Loth, E, “Adhesion strength and superhydrophobicity of polyurethane/organoclay nanocomposite coatings.” J. Appl. Polym. Sci., 125 (S1) E445–E452 (2012)

    CAS  Google Scholar 

  25. Heidarian, M, Shishesaz, M, Kassiriha, S, Nematollahi, M, “Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process.” Prog. Org. Coat., 68 (3) 180–188 (2010)

    CAS  Google Scholar 

  26. Charpentier, P, Burgess, K, Wang, L, Chowdhury, R, Lotus, A, Moula, G, “Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings.” Nanotechnology, 23 (42) 425606 (2012)

    CAS  Google Scholar 

  27. Chen, J, Zhou, Y, Nan, Q, Sun, Y, Ye, X, Wang, Z, “Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites.” Appl. Surf. Sci., 253 (23) 9154–9158 (2007)

    CAS  Google Scholar 

  28. Sabzi, M, Mirabedini, S, Zohuriaan-Mehr, J, Atai, M, “Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating.” Prog. Org. Coat., 65 (2) 222–228 (2009)

    CAS  Google Scholar 

  29. Burattini, S, Greenland, BW, Chappell, D, Colquhoun, HM, Hayes, W, “Healable polymeric materials: a tutorial review.” Chem. Soc. Rev., 39 (6) 1973–1985 (2010)

    CAS  Google Scholar 

  30. Wu, DY, Meure, S, Solomon, D, “Self-healing polymeric materials: a review of recent developments.” Prog. Polym. Sci., 33 (5) 479–522 (2008)

    CAS  Google Scholar 

  31. Yang, Y, Urban, MW, “Self-healing polymeric materials.” Chem. Soc. Rev., 42 (17) 7446–7467 (2013)

    CAS  Google Scholar 

  32. Aguirresarobe, RH, Nevejans, S, Reck, B, Irusta, L, Sardon, H, Asua, JM, Ballard, N, “Healable and self-healing polyurethanes using dynamic chemistry.” Prog. Polym. Sci., 114 101362 (2021)

    CAS  Google Scholar 

  33. Zou, W, Dong, J, Luo, Y, Zhao, Q, Xie, T, “Dynamic covalent polymer networks: from old chemistry to modern day innovations.” Adv. Mater., 29 (14) 1606100 (2017)

    Google Scholar 

  34. Zhao, J, Xu, R, Luo, G, Wu, J, Xia, H, “A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer.” J. Mater. Chem. B, 4 (5) 982–989 (2016)

    CAS  Google Scholar 

  35. Chen, S, Wang, F, Peng, Y, Chen, T, Wu, Q, Sun, P, “A single molecular Diels-Alder crosslinker for achieving recyclable cross-linked polymers.” Macromol. Rapid Commun., 36 (18) 1687–1692 (2015)

    CAS  Google Scholar 

  36. Zeng, C, Seino, H, Ren, J, Hatanaka, K, Yoshie, N, “Bio-based furan polymers with self-healing ability.” Macromolecules, 46 (5) 1794–1802 (2013)

    CAS  Google Scholar 

  37. Diels, O, “The Diels-Alder reaction.” Ber. Dtsch. Chem. Ges, 62 554–562 (1929)

    Google Scholar 

  38. Chen, X, Wudl, F, Mal, AK, Shen, H, Nutt, SR, “New thermally remendable highly cross-linked polymeric materials.” Macromolecules, 36 (6) 1802–1807 (2003)

    CAS  Google Scholar 

  39. Mauldin, TC, Kessler, M, “Self-healing polymers and composites.” Int. Mater. Rev., 55 (6) 317–346 (2010)

    CAS  Google Scholar 

  40. Lendlein, A, Kelch, S, “Shape-memory polymers.” Angew. Chem. Int. Ed., 41 (12) 2034–2057 (2002)

    CAS  Google Scholar 

  41. Heo, Y, Sodano, HA, “Self-healing polyurethanes with shape recovery.” Adv. Funct. Mater., 24 (33) 5261–5268 (2014)

    CAS  Google Scholar 

  42. Zhao, J, Xu, R, Luo, G, Wu, J, Xia, H, “Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility.” Polym. Chem., 7 (47) 7278–7286 (2016)

    CAS  Google Scholar 

  43. Fang, Y, Du, X, Yang, S, Wang, H, Cheng, X, Du, Z, “Sustainable and tough polyurethane films with self-healability and flame retardance enabled by reversible chemistry and cyclotriphosphazene.” Polym. Chem., 10 (30) 4142–4153 (2019)

    CAS  Google Scholar 

  44. Behera, PK, Mondal, P, Singha, NK, “Self-healable and ultrahydrophobic polyurethane-POSS hybrids by Diels-Alder ‘click’ reaction: a new class of coating material.” Macromolecules, 51 (13) 4770–4781 (2018)

    CAS  Google Scholar 

  45. Belenguer, AM, Friščić, T, Day, GM, Sanders, JK, “Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis.” Chem. Sci., 2 (4) 696–700 (2011)

    CAS  Google Scholar 

  46. Yan, C, Yang, F, Wu, M, Yuan, Y, Chen, F, Chen, Y, “Phase-locked dynamic and mechanoresponsive bonds design toward robust and mechanoluminescent self-healing polyurethanes: a microscopic view of self-healing behaviors.” Macromolecules, 52 (23) 9376–9382 (2019)

    CAS  Google Scholar 

  47. Xu, Y, Chen, D, “A novel self-healing polyurethane based on disulfide bonds.” Macromol. Chem. Phys., 217 (10) 1191–1196 (2016)

    CAS  Google Scholar 

  48. Ghosh, B, Urban, MW, “Self-repairing oxetane-substituted chitosan polyurethane networks.” Science, 323 (5920) 1458–1460 (2009)

    CAS  Google Scholar 

  49. Huang, L, Yi, N, Wu, Y, Zhang, Y, Zhang, Q, Huang, Y, Ma, Y, Chen, Y, “Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites.” Adv. Mater., 25 (15) 2224–2228 (2013)

    CAS  Google Scholar 

  50. Amamoto, Y, Otsuka, H, Takahara, A, Matyjaszewski, K, “Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light.” Adv. Mater., 24 (29) 3975–3980 (2012)

    CAS  Google Scholar 

  51. Rivaton, A, Chambon, S, Manceau, M, Gardette, J-L, Lemaître, N, Guillerez, S, “Light-induced degradation of the active layer of polymer-based solar cells.” Polym. Degrad. Stab., 95 (3) 278–284 (2010)

    CAS  Google Scholar 

  52. Ji, S, Cao, W, Yu, Y, Xu, H, “Visible-light-induced self-healing diselenide-containing polyurethane elastomer.” Adv. Mater., 27 (47) 7740–7745 (2015)

    CAS  Google Scholar 

  53. Qian, Y, An, X, Huang, X, Pan, X, Zhu, J, Zhu, X, “Recyclable self-healing polyurethane cross-linked by alkyl diselenide with enhanced mechanical properties.” Polymers, 11 (5) 773 (2019)

    Google Scholar 

  54. He, L, Fullenkamp, DE, Rivera, JG, Messersmith, PB, “pH responsive self-healing hydrogels formed by boronate–catechol complexation.” Chem. Commun., 47 (26) 7497–7499 (2011)

    CAS  Google Scholar 

  55. Cromwell, OR, Chung, J, Guan, Z, “Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds.” J. Am. Chem. Soc., 137 (20) 6492–6495 (2015)

    CAS  Google Scholar 

  56. Cash, JJ, Kubo, T, Bapat, AP, Sumerlin, BS, “Room-temperature self-healing polymers based on dynamic-covalent boronic esters.” Macromolecules, 48 (7) 2098–2106 (2015)

    CAS  Google Scholar 

  57. Nakahata, M, Mori, S, Takashima, Y, Hashidzume, A, Yamaguchi, H, Harada, A, “pH-and sugar-responsive gel assemblies based on boronate–catechol interactions.” ACS Macro Lett., 3 (4) 337–340 (2014)

    CAS  Google Scholar 

  58. Xia, NN, Rong, MZ, Zhang, MQ, “Stabilization of catechol–boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range.” J. Mater. Chem. A, 4 (37) 14122–14131 (2016)

    CAS  Google Scholar 

  59. Song, K, Ye, W, Gao, X, Fang, H, Zhang, Y, Zhang, Q, Li, X, Yang, S, Wei, H, Ding, Y, “Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties.” Mater. Horiz., 8 (1) 216–223 (2021)

    CAS  Google Scholar 

  60. Stowell, JC, Padegimas, SJ, “Urea dissociation. Measure of steric hindrance in secondary amines.” J. Org. Chem., 39 (16) 2448–2449 (1974)

    CAS  Google Scholar 

  61. Wicks, DA, Wicks, ZW, Jr, “Blocked isocyanates III: part B: uses and applications of blocked isocyanates.” Prog. Org. Coat., 41 (1–3) 1–83 (2001)

    CAS  Google Scholar 

  62. Ying, H, Zhang, Y, Cheng, J, “Dynamic urea bond for the design of reversible and self-healing polymers.” Nat. Commun., 5 (1) 3218 (2014)

    Google Scholar 

  63. Ying, H, Cheng, J, “Hydrolyzable polyureas bearing hindered urea bonds.” J. Am. Chem. Soc., 136 (49) 16974–16977 (2014)

    CAS  Google Scholar 

  64. Zhang, Y, Ying, H, Hart, KR, Wu, Y, Hsu, AJ, Coppola, AM, Kim, TA, Yang, K, Sottos, NR, White, SR, “Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds.” Adv. Mater., 28 (35) 7646–7651 (2016)

    CAS  Google Scholar 

  65. Sijbesma, RP, Beijer, FH, Brunsveld, L, Folmer, BJB, Hirschberg, JHKK, Lange, RFM, Lowe, JKL, Meijer, EW, “Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding.” Science, 278 (5343) 1601–1604 (1997)

    CAS  Google Scholar 

  66. Harada, A, Takashima, Y, Nakahata, M, “Supramolecular polymeric materials via cyclodextrin-guest interactions.” Acc. Chem. Res., 47 (7) 2128–2140 (2014)

    CAS  Google Scholar 

  67. Xiao, L, Shi, J, Wu, K, Lu, M, “Self-healing supramolecular waterborne polyurethane based on host–guest interactions and multiple hydrogen bonds.” React. Funct. Polym., 148 104482 (2020)

    CAS  Google Scholar 

  68. Yuan, J, Fang, X, Zhang, L, Hong, G, Lin, Y, Zheng, Q, Xu, Y, Ruan, Y, Weng, W, Xia, H, “Multi-responsive self-healing metallo-supramolecular gels based on ‘click’ ligand.” J. Mater. Chem., 22 (23) 11515–11522 (2012)

    CAS  Google Scholar 

  69. McConnell, AJ, Wood, CS, Neelakandan, PP, Nitschke, JR, “Stimuli-responsive metal–ligand assemblies.” Chem. Rev., 115 (15) 7729–7793 (2015)

    CAS  Google Scholar 

  70. Chen, P, Li, Q, Grindy, S, Holten-Andersen, N, “White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties.” J. Am. Chem. Soc., 137 (36) 11590–11593 (2015)

    CAS  Google Scholar 

  71. de Espinosa, LM, Fiore, GL, Weder, C, Foster, EJ, Simon, YC, “Healable supramolecular polymer solids.” Prog. Polym. Sci., 49 60–78 (2015)

    Google Scholar 

  72. Tang, Z, Huang, J, Guo, B, Zhang, L, Liu, F, “Bioinspired engineering of sacrificial metal–ligand bonds into elastomers with supramechanical performance and adaptive recovery.” Macromolecules, 49 (5) 1781–1789 (2016)

    CAS  Google Scholar 

  73. Liang, J, Zhang, J, Zhu, L, Duarandin, A, Young, VG, Jr, Geacintov, N, Canary, JW, “Structures, metal ion affinities, and fluorescence properties of soluble derivatives of tris((6-phenyl-2-pyridyl) methyl) amine.” Inorg. Chem., 48 (23) 11196–11208 (2009)

    CAS  Google Scholar 

  74. Stafford, VS, Suntharalingam, K, Shivalingam, A, White, AJ, Mann, DJ, Vilar, R, “Syntheses of polypyridyl metal complexes and studies of their interaction with quadruplex DNA.” Dalton Trans., 44 (8) 3686–3700 (2015)

    CAS  Google Scholar 

  75. Wang, Z, Xie, C, Yu, C, Fei, G, Wang, Z, Xia, H, “A facile strategy for self-healing polyurethanes containing multiple metal-ligand bonds.” Macromol. Rapid Commun., 39 (6) 1700678 (2018)

    Google Scholar 

  76. Chaudhari, A, Gite, V, Rajput, S, Mahulikar, P, Kulkarni, R, “Development of eco-friendly polyurethane coatings based on neem oil polyetheramide.” Ind. Crops Prod., 50 550–556 (2013)

    CAS  Google Scholar 

  77. Chaudhari, AB, Tatiya, PD, Hedaoo, RK, Kulkarni, RD, Gite, VV, “Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings.” Ind. Eng. Chem. Res., 52 (30) 10189–10197 (2013)

    CAS  Google Scholar 

  78. Marathe, R, Tatiya, P, Chaudhari, A, Lee, J, Mahulikar, P, Sohn, D, Gite, V, “Neem acetylated polyester polyol—Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property.” Ind. Crops Prod., 77 239–250 (2015)

    CAS  Google Scholar 

  79. Gaikwad, MS, Gite, VV, Mahulikar, PP, Hundiwale, DG, Yemul, OS, “Eco-friendly polyurethane coatings from cottonseed and karanja oil.” Prog. Org. Coat., 86 164–172 (2015)

    CAS  Google Scholar 

  80. Narute, P, Palanisamy, A, “Study of the performance of polyurethane coatings derived from cottonseed oil polyol.” J. Coat. Technol. Res., 13 171–179 (2016)

    CAS  Google Scholar 

  81. Alam, M, Alandis, NM, Zafar, F, Sharmin, E, Al-Mohammadi, YM, “Polyurethane-TiO2 nanocomposite coatings from sunflower-oil-based amide diol as soft segment.” J. Macromol. Sci. Part A, 55 (10) 698–708 (2018)

    CAS  Google Scholar 

  82. Shendi, HK, Omrani, I, Ahmadi, A, Farhadian, A, Babanejad, N, Nabid, MR, “Synthesis and characterization of a novel internal emulsifier derived from sunflower oil for the preparation of waterborne polyurethane and their application in coatings.” Prog. Org. Coat., 105 303–309 (2017)

    CAS  Google Scholar 

  83. Doley, S, Dolui, SK, “Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties.” Eur. Polym. J., 102 161–168 (2018)

    CAS  Google Scholar 

  84. Sharmin, E, ur Rahman, O, Zafar, F, Akram, D, Alam, M, Ahmad, S, “Linseed oil polyol/ZnO bionanocomposite towards mechanically robust, thermally stable, hydrophobic coatings: a novel synergistic approach utilising a sustainable resource.” RSC Adv., 5 (59) 47928–47944 (2015)

    CAS  Google Scholar 

  85. Mahajan, MS, Mahulikar, PP, Gite, VV, “Eugenol based renewable polyols for development of 2K anticorrosive polyurethane coatings.” Prog. Org. Coat., 148 105826 (2020)

    CAS  Google Scholar 

  86. Yakushin, V, Abolins, A, Vilsone, D, Sevastyanova, I, “Polyurethane coatings based on linseed oil phosphate ester polyols with intumescent flame retardants.” Fire Mater., 43 (1) 92–100 (2019)

    CAS  Google Scholar 

  87. Akram, D, Sharmin, E, Ahmad, S, “Linseed polyurethane/tetraethoxyorthosilane/fumed nano-silica hybrid nanocomposite coatings: physico-mechanical and potentiodynamic polarization measurements studies.” Prog. Org. Coat., 77 (5) 957–964 (2014)

    CAS  Google Scholar 

  88. Ismail, EA, Motawie, A, Sadek, E, “Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols.” Egypt. J. Pet., 20 (2) 1–8 (2011)

    CAS  Google Scholar 

  89. Ni, B, Yang, L, Wang, C, Wang, L, Finlow, D, “Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings.” J. Therm. Anal. Calorim., 100 (1) 239–246 (2010)

    CAS  Google Scholar 

  90. Alagi, P, Ghorpade, R, Jang, JH, Patil, C, Jirimali, H, Gite, V, Hong, SC, “Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings.” Ind. Crops Prod., 113 249–258 (2018)

    CAS  Google Scholar 

  91. Das, S, Pandey, P, Mohanty, S, Kumar Nayak, S, “Effect of nanonano-silica on the physicochemical, morphological and curing characteristics of transesterified castor oil based polyurethane coatings.” Prog. Org. Coat., 97 233–243 (2016)

    CAS  Google Scholar 

  92. Hablot, E, Zheng, D, Bouquey, M, Avérous, L, “Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties.” Macromol. Mater. Eng., 293 (11) 922–929 (2008)

    CAS  Google Scholar 

  93. Bakhshi, H, Yeganeh, H, Yari, A, Nezhad, SK, “Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties.” J. Mater. Sci., 49 5365–5377 (2014)

    CAS  Google Scholar 

  94. Chen, K, Zhou, S, Wu, L, “Facile fabrication of self-repairing superhydrophobic coatings.” Chem. Commun., 50 (80) 11891–11894 (2014)

    CAS  Google Scholar 

  95. Di Mundo, R, Palumbo, F, d’Agostino, R, “Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity.” Langmuir, 24 (9) 5044–5051 (2008)

    Google Scholar 

  96. Munz, M, Giusca, CE, Myers-Ward, RL, Gaskill, DK, Kazakova, O, “Thickness-dependent hydrophobicity of epitaxial graphene.” ACS Nano, 9 (8) 8401–8411 (2015)

    CAS  Google Scholar 

  97. Wang, H, Tan, S-C, Wang, Y, Jiang, C, Shi, G-Y, Zhang, M-X, Che, H-Z, “A multisource observation study of the severe prolonged regional haze episode over eastern China in January 2013.” Atmos. Environ., 89 807–815 (2014)

    CAS  Google Scholar 

  98. Bayer, IS, “On the durability and wear resistance of transparent superhydrophobic coatings.” Coatings, 7 (1) 12 (2017)

    Google Scholar 

  99. Dai, Z, Yang, K, Dong, Q, “Mechanical, thermal and morphology properties of thermoplastic polyurethane copolymers incorporating α, ω-dihydroxy-[poly (propyleneoxide)-poly (dimethylsiloxane)-poly (propyleneoxide)] of varying poly (propyleneoxide) molecular weight.” Open J. Synth. Theory Appl., 4 (03) 41 (2015)

    CAS  Google Scholar 

  100. Nine, MJ, Cole, MA, Johnson, L, Tran, DNH, Losic, D, “Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties.” ACS Appl. Mater. Interfaces, 7 (51) 28482–28493 (2015)

    CAS  Google Scholar 

  101. Milionis, A, Dang, K, Prato, M, Loth, E, Bayer, IS, “Liquid repellent nanocomposites obtained from one-step water-based spray.” J. Mater. Chem. A, 3 (24) 12880–12889 (2015)

    CAS  Google Scholar 

  102. Nine, MJ, Cole, MA, Tran, DNH, Losic, D, “Graphene: a multipurpose material for protective coatings.” J. Mater. Chem. A, 3 (24) 12580–12602 (2015)

    CAS  Google Scholar 

  103. Steele, A, Davis, A, Kim, J, Loth, E, Bayer, IS, “Wear independent similarity.” ACS Appl. Mater. Interfaces, 7 (23) 12695–12701 (2015)

    CAS  Google Scholar 

  104. Yilbas, BS, Ibrahim, A, Ali, H, Khaled, M, Laoui, T, “Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized nano-silica particles deposited glass surface.” Appl. Surf. Sci., 442 213–223 (2018)

    CAS  Google Scholar 

  105. Wang, P, Chen, M, Han, H, Fan, X, Liu, Q, Wang, J, “Transparent and abrasion-resistant superhydrophobic coating with robust self-cleaning function in either air or oil.” J. Mater. Chem. A, 4 (20) 7869–7874 (2016)

    CAS  Google Scholar 

  106. Xia, Y, Larock, RC, “Preparation and properties of aqueous castor oil-based polyurethane–nano-silica nanocomposite dispersions through a sol–gel process.” Macromol. Rapid Commun., 32 (17) 1331–1337 (2011)

    CAS  Google Scholar 

  107. Mishra, AK, Mishra, RS, Narayan, R, Raju, K, “Effect of nano ZnO on the phase mixing of polyurethane hybrid dispersions.” Prog. Org. Coat., 67 (4) 405–413 (2010)

    CAS  Google Scholar 

  108. Bahattab, MA, Donate-Robles, J, García-Pacios, V, Martín-Martínez, JM, “Characterization of polyurethane adhesives containing nanonano-silicas of different particle size.” Int. J. Adhes. Adhes., 31 (2) 97–103 (2011)

    CAS  Google Scholar 

  109. Zhang, S, Jiang, J, Yang, C, Chen, M, Liu, X, “Facile synthesis of waterborne UV-curable polyurethane/nano-silica nanocomposites and morphology, physical properties of its nanostructured films.” Prog. Org. Coat., 70 (1) 1–8 (2011)

    CAS  Google Scholar 

  110. Chen, Y, Lin, A, Gan, F, “Improvement of polyacrylate coating by filling modified nano-TiO2.” Appl. Surf. Sci., 252 (24) 8635–8640 (2006)

    CAS  Google Scholar 

  111. Yang, C-H, Liu, F-J, Liu, Y-P, Liao, W-T, “Hybrids of colloidal nano-silica and waterborne polyurethane.” J. Colloid Interface Sci., 302 (1) 123–132 (2006)

    CAS  Google Scholar 

  112. Goda, H, Frank, CW, “Fluorescence studies of the hybrid composite of segmented-polyurethane and nano-silica.” Chem. Mater., 13 (9) 2783–2787 (2001)

    CAS  Google Scholar 

  113. Schmidt, H, Scholze, H, Kaiser, A, “Principles of hydrolysis and condensation reaction of alkoxysilanes.” J. Non-Cryst. Solids, 63 (1–2) 1–11 (1984)

    CAS  Google Scholar 

  114. Xu, Y, Liu, R, Wu, D, Sun, Y, Gao, H, Yuan, H, Deng, F, “Ammonia-catalyzed hydrolysis kinetics of mixture of tetraethoxysilane with methyltriethoxysilane by 29Si NMR.” J. Non-Cryst. Solids, 351 (30–32) 2403–2413 (2005)

    CAS  Google Scholar 

  115. Zou, H, Wu, S, Shen, J, “Polymer/nano-silica nanocomposites: preparation, characterization, properties, and applications.” Chem. Rev., 108 (9) 3893–3957 (2008)

    CAS  Google Scholar 

  116. Daniels, M, Francis, L, “Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal nano-silica coatings.” J. Colloid Interface Sci., 205 (1) 191–200 (1998)

    CAS  Google Scholar 

  117. Chen, S, You, B, Zhou, S, Wu, L, “Preparation and characterization of scratch and mar resistant waterborne epoxy/nano-silica nanocomposite clearcoat.” J. Appl. Polym. Sci., 112 (6) 3634–3639 (2009)

    CAS  Google Scholar 

  118. Tanaka, K, Kawakami, S, “Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites.” Wear, 79 (2) 221–234 (1982)

    CAS  Google Scholar 

  119. Zhang, MQ, Rong, MZ, Yu, SL, Wetzel, B, Friedrich, K, “Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles.” Macromol. Mater. Eng., 287 (2) 111–115 (2002)

    CAS  Google Scholar 

  120. Myshkin, NK, Kovalev, AV, "Adhesion and friction of polymers." In: Polymer Tribology, pp. 3-37. World Scientific (2009)

  121. Jiang, T, Kuila, T, Kim, NH, Ku, B-C, Lee, JH, “Enhanced mechanical properties of silanized nano-silica nanoparticle attached graphene oxide/epoxy composites.” Compos. Sci. Technol., 79 115–125 (2013)

    CAS  Google Scholar 

  122. Szabó, T, Berkesi, O, Forgó, P, Josepovits, K, Sanakis, Y, Petridis, D, Dékány, I, “Evolution of surface functional groups in a series of progressively oxidized graphite oxides.” Chem. Mater., 18 (11) 2740–2749 (2006)

    Google Scholar 

  123. McLauchlin, AR, Thomas, NL, “Preparation and thermal characterisation of poly (lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant.” Polym. Degrad. Stab., 94 (5) 868–872 (2009)

    CAS  Google Scholar 

  124. Lei, L, Xia, Z, Zhang, L, Zhang, Y, Zhong, L, “Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions.” Prog. Org. Coat., 97 19–27 (2016)

    CAS  Google Scholar 

  125. Kou, L, Gao, C, “Making nano-silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings.” Nanoscale, 3 (2) 519–528 (2011)

    CAS  Google Scholar 

  126. Li, J, Yang, Z, Qiu, H, Dai, Y, Zheng, Q, Zheng, G-P, Yang, J, “Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide.” J. Mater. Chem. A, 1 (37) 11451–11456 (2013)

    CAS  Google Scholar 

  127. Li, Y, Yang, Z, Qiu, H, Dai, Y, Zheng, Q, Li, J, Yang, J, “Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings.” J. Mater. Chem. A, 2 (34) 14139–14145 (2014)

    CAS  Google Scholar 

  128. Stankovich, S, Piner, RD, Nguyen, ST, Ruoff, RS, “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets.” Carbon, 44 (15) 3342–3347 (2006)

    CAS  Google Scholar 

  129. Xu, C, Wu, X, Zhu, J, Wang, X, “Synthesis of amphiphilic graphite oxide.” Carbon, 46 (2) 386–389 (2008)

    CAS  Google Scholar 

  130. Parhizkar, N, Ramezanzadeh, B, Shahrabi, T, “Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets.” Appl. Surf. Sci., 439 45–59 (2018)

    CAS  Google Scholar 

  131. Parhizkar, N, Shahrabi, T, Ramezanzadeh, B, “Synthesis and characterization of a unique isocyanate silane reduced graphene oxide nanosheets; Screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance of an amido-amine cured epoxy composite.” J. Taiwan Inst. Chemi. Engi., 82 281–299 (2018)

    CAS  Google Scholar 

  132. Lin, P, Meng, L, Huang, Y, Liu, L, Fan, D, “Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups.” Appl. Surf. Sci., 324 784–790 (2015)

    CAS  Google Scholar 

  133. Nimita Jebaranjitham, J, Mageshwari, C, Saravanan, R, Mu, N, “Fabrication of amine functionalized graphene oxide–AgNPs nanocomposite with improved dispersibility for reduction of 4-nitrophenol.” Compo. Part B Eng., 171 302–309 (2019)

    CAS  Google Scholar 

  134. Phua, SL, Yang, L, Toh, CL, Huang, S, Tsakadze, Z, Lau, SK, Mai, Y-W, Lu, X, “Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding.” ACS Appl. Mater. Interfaces, 4 (9) 4571–4578 (2012)

    CAS  Google Scholar 

  135. Christopher, G, Anbu Kulandainathan, M, Harichandran, G, “Highly dispersive waterborne polyurethane/ZnO nanocomposites for corrosion protection.” J. Coat. Technol. Res., 12 (4) 657–667 (2015)

    CAS  Google Scholar 

  136. Christopher, G, Anbu Kulandainathan, M, Harichandran, G, “Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites.” Prog. Org. Coat., 89 199–211 (2015)

    CAS  Google Scholar 

  137. Zhou, C, Lu, X, Xin, Z, Liu, J, Zhang, Y, “Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel.” Corros. Sci., 80 269–275 (2014)

    CAS  Google Scholar 

  138. Syed, JA, Tang, S, Meng, X, “Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability.” Appl. Surf. Sci., 383 177–190 (2016)

    CAS  Google Scholar 

  139. Khudyakov, IV, Zopf, DR, Turro, NJ, “Polyurethane nanocomposites.” Des. Monomers Polym., 12 (4) 279–290 (2009)

    CAS  Google Scholar 

  140. Rehab, A, Akelah, A, Agag, T, Shalaby, N, “Preparation and characterization of polyurethane–organoclay nanocomposites.” Polym. Compos., 28 (1) 108–115 (2007)

    CAS  Google Scholar 

  141. Bayer, IS, Steele, A, Martorana, P, Loth, E, Robinson, SJ, Stevenson, D, “Biolubricant induced phase inversion and superhydrophobicity in rubber-toughened biopolymer/organoclay nanocomposites.” Appl. Phys. Lett., 95 (6) 063702 (2009)

    Google Scholar 

  142. Kowalczyk, K, Spychaj, T, “Epoxy coatings with modified montmorillonites.” Prog. Org. Coat., 62 (4) 425–429 (2008)

    CAS  Google Scholar 

  143. Sui, R, Rizkalla, AS, Charpentier, PA, “Formation of titania nanofibers: a direct sol−gel route in supercritical CO2.” Langmuir, 21 (14) 6150–6153 (2005)

    CAS  Google Scholar 

  144. Horikoshi, S, Serpone, N, Hisamatsu, Y, Hidaka, H, “Photocatalyzed degradation of polymers in aqueous semiconductor suspensions. 3. Photooxidation of a solid polymer: TiO2-blended poly (vinyl chloride) film.” Environ. Sci. Technol., 32 (24) 4010–4016 (1998)

    CAS  Google Scholar 

  145. Jimmy, CY, Xie, Y, Tang, HY, Zhang, L, Chan, H, Zhao, J, “Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films.” J. Photochem. Photobiol. A Chem., 156 (1–3) 235–241 (2003)

    Google Scholar 

  146. Matsunaga, T, Tomoda, R, Nakajima, T, Nakamura, N, Komine, T, “Continuous-sterilization system that uses photosemiconductor powders.” Appl. Environ. Microbiol., 54 (6) 1330–1333 (1988)

    CAS  Google Scholar 

  147. Gupta, RK, Gangoliya, SS, Singh, NK, “Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains.” J. Food Sci. Technol., 52 676–684 (2015)

    CAS  Google Scholar 

  148. Huang, W, Tang, X, Wang, Y, Koltypin, Y, Gedanken, A, “Selective synthesis of anatase and rutile via ultrasound irradiation.” Chem. Commun., 1415–1416 (2000)

  149. Hyeon, T, Fang, M, Suslick, KS, “Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties.” J. Am. Chem. Soc., 118 (23) 5492–5493 (1996)

    CAS  Google Scholar 

  150. Cao, Y, Zhou, Y, Shan, Y, Ju, HX, Xue, X, Wu, Z, “(Ti, Sn)O2 solid solution self-aligned into ‘sandwich’ array on grafted modification collagen matrix.” Adv. Mater., 16 (14) 1189–1192 (2004)

    CAS  Google Scholar 

  151. Davis, RJ, Liu, Z, “Titania−nano-silica: a model binary oxide catalyst system.” Chem. Mater., 9 (11) 2311–2324 (1997)

    CAS  Google Scholar 

  152. Li, H, Zhang, Z, Ma, X, Hu, M, Wang, X, Fan, P, “Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane.” Surf. Coat. Technol., 201 (9–11) 5269–5272 (2007)

    CAS  Google Scholar 

  153. Xu, X, Li, B, Lu, H, Zhang, Z, Wang, H, “The interface structure of nano-SiO2/PA66 composites and its influence on material’s mechanical and thermal properties.” Appl. Surf. Sci., 254 (5) 1456–1462 (2007)

    CAS  Google Scholar 

  154. Li, X, Cao, Z, Zhang, Z, Dang, H, “Surface-modification in situ of nano-SiO2 and its structure and tribological properties.” Appl. Surf. Sci., 252 (22) 7856–7861 (2006)

    CAS  Google Scholar 

  155. Zhou, TH, Ruan, WH, Yang, JL, Rong, MZ, Zhang, MQ, Zhang, Z, “A novel route for improving creep resistance of polymers using NPs.” Compos. Sci. Technol., 67 (11–12) 2297–2302 (2007)

    CAS  Google Scholar 

  156. Wang, L, Wang, K, Chen, L, Zhang, Y, He, C, “Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite.” Compos. Part A Appl. Sci. Manuf., 37 (11) 1890–1896 (2006)

    Google Scholar 

  157. Aliofkhazraei, M, Anti-Abrasive Nanocoatings: Current and Future Applications. Elsevier, Amsterdam (2014)

    Google Scholar 

  158. Zygmunt, R, “Special tribological coatings.” Tribol. Ser., 13 269–301 (1989)

    Google Scholar 

  159. Yeganeh, H, Shamekhi, MA, “Novel polyurethane insulating coatings based on polyhydroxyl compounds, derived from glycolysed PET and castor oil.” J. Appl. Polym. Sci., 99 (3) 1222–1233 (2006)

    CAS  Google Scholar 

  160. Bhushan, B, Ko, PL, “Introduction to tribology.” Appl. Mech. Rev., 56 (1) B6–B7 (2003)

    Google Scholar 

  161. Barwell, FT, Plugging the Tribological Leak. Production Engineering Research Association, Bingley (1969)

    Google Scholar 

  162. Blau, PJ, "Friction, lubrication, and wear technology." ASM Int., 175–235 (1992)

  163. Malaki, M, Hashemzadeh, Y, Tehrani, AF, “Abrasion resistance of acrylic polyurethane coatings reinforced by nano- silica.” Prog. Org. Coat., 125 507–515 (2018)

    CAS  Google Scholar 

  164. Mu, B, Li, X, Yang, B, Cui, J, Wang, X, Guo, J, Bao, X, Chen, L, “Tribological behaviors of polyurethane composites containing self-lubricating microcapsules and reinforced by short carbon fibers.” J. Appl. Polym. Sci., 134 (43) 45331 (2017)

    Google Scholar 

  165. Li, J, Xiao, G, Chen, C, Li, R, Yan, D, “Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer.” J. Mater. Chem. A, 1 (4) 1481–1487 (2013)

    CAS  Google Scholar 

  166. Adrar, S, Habi, A, Ajji, A, Grohens, Y, “Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends.” Appl. Clay Sci., 157 65–75 (2018)

    CAS  Google Scholar 

  167. Zhu, M, Li, S, Sun, Q, Shi, B, “Enhanced mechanical property, chemical resistance and abrasion durability of waterborne polyurethane based coating by incorporating highly dispersed polyacrylic acid modified graphene oxide.” Prog. Org. Coat., 170 106949 (2022)

    CAS  Google Scholar 

  168. Li, J, Hong, R, Li, M, Li, H, Zheng, Y, Ding, J, “Effects of ZnO NPs on the mechanical and antibacterial properties of polyurethane coatings.” Prog. Org. Coat., 64 (4) 504–509 (2009)

    CAS  Google Scholar 

  169. Kalita, H, Kamila, R, Mohanty, S, Nayak, SK, “Mechanical, thermal and accelerated weathering studies of bio-based polyurethane/clay nanocomposites coatings.” Adv. Polym. Technol., 37 (6) 1954–1962 (2018)

    CAS  Google Scholar 

  170. Cui, M, Wang, B, Wang, Z, “Nature-inspired strategy for anticorrosion.” Adv. Eng. Mater., 21 (7) 1801379 (2019)

    Google Scholar 

  171. Popoola, A, Olorunniwo, O, Ige, O, “Corrosion resistance through the application of anti-corrosion coatings.” Dev. Corros. Prot., 13 (4) 241–270 (2014)

    Google Scholar 

  172. Sun, W, Wang, L, Wu, T, Pan, Y, Liu, G, “Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection.” Carbon, 79 605–614 (2014)

    CAS  Google Scholar 

  173. Khatoon, H, Iqbal, S, Ahmad, S, “Influence of carbon nanodots encapsulated polycarbazole hybrid on the corrosion inhibition performance of polyurethane nanocomposite coatings.” New J. Chem., 43 (26) 10278–10290 (2019)

    CAS  Google Scholar 

  174. Khatoon, H, Iqbal, S, Ahmad, S, “Covalently functionalized ethylene diamine modified graphene oxide poly-paraphenylene diamine dispersed polyurethane anticorrosive nanocomposite coatings.” Prog. Org. Coat., 150 105966 (2021)

    CAS  Google Scholar 

  175. Antonini, C, Innocenti, M, Horn, T, Marengo, M, Amirfazli, A, “Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems.” Cold Reg. Sci. Technol., 67 (1–2) 58–67 (2011)

    Google Scholar 

  176. Kulinich, S, Farzaneh, M, “Alkylsilane self-assembled monolayers: modeling their wetting characteristics.” Appl. Surf. Sci., 230 (1–4) 232–240 (2004)

    CAS  Google Scholar 

  177. Croutch, V, “Adhesion of ice to coatings and the performance of ice release coatings.” J. Coat. Technol., 64 41–53 (1992)

    CAS  Google Scholar 

  178. Laforte, JL, Allaire, MA, Laflamme, J, “State-of-the-art on power line de-icing.” Atmos. Res., 46 (1) 143–158 (1998)

    Google Scholar 

  179. Andersson, L-O, Golander, C-G, Persson, S, “Ice adhesion to rubber materials.” J. Adhes. Sci. Technol., 8 (2) 117–132 (1994)

    CAS  Google Scholar 

  180. Petrenko, VF, Peng, S, “Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs).” Can. J. Phys., 81 (1–2) 387–393 (2003)

    CAS  Google Scholar 

  181. Fu, K, Lu, C, Liu, Y, Zhang, H, Zhang, B, Zhang, H, Zhou, F, Zhang, Q, Zhu, B, “Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction.” Chem. Eng. J., 404 127110 (2021)

    CAS  Google Scholar 

  182. Chen, J, Liu, J, He, M, Li, K, Cui, D, Zhang, Q, Zeng, X, Zhang, Y, Wang, J, Song, Y, “Superhydrophobic surfaces cannot reduce ice adhesion.” Appl. Phys. Lett., 101 (11) 111603 (2012)

    Google Scholar 

  183. Ping, Z, Nguyen, Q, Chen, S, Zhou, J, Ding, Y, “States of water in different hydrophilic polymers—DSC and FTIR studies.” Polymer, 42 (20) 8461–8467 (2001)

    CAS  Google Scholar 

  184. Dou, R, Chen, J, Zhang, Y, Wang, X, Cui, D, Song, Y, Jiang, L, Wang, J, “Anti-icing coating with an aqueous lubricating layer.” ACS Appl. Mater. Interfaces, 6 (10) 6998–7003 (2014)

    CAS  Google Scholar 

  185. Rahimi, A, Murphy, M, Upadhyay, V, Faiyaz, K, Battocchi, D, Webster, DC, “Amphiphilically modified self-stratified siloxane-glycidyl carbamate coatings for anti-icing applications.” J. Coat. Technol. Res., 18 83–97 (2021)

    CAS  Google Scholar 

  186. Yu, M, Liang, L, Zhang, Y, Wang, Z, “Fabrication of a durable anti-icing composite coating based on polyurethane elastomer and nano-silica NPs.” Mater. Res. Express, 9 (5) 055504 (2022)

    Google Scholar 

  187. Chang, Y, Shih, YJ, Lai, CJ, Kung, HH, Jiang, S, “Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood.” Adv. Funct. Mater., 23 (9) 1100–1110 (2013)

    CAS  Google Scholar 

  188. Asuri, P, Karajanagi, SS, Kane, RS, Dordick, JS, “Polymer–nanotube–enzyme composites as active antifouling films.” Small, 3 (1) 50–53 (2007)

    CAS  Google Scholar 

  189. Callow, JA, Callow, ME, “Trends in the development of environmentally friendly fouling-resistant marine coatings.” Nat. Commun., 2 (1) 244 (2011)

    Google Scholar 

  190. Goda, T, Tabata, M, Sanjoh, M, Uchimura, M, Iwasaki, Y, Miyahara, Y, “Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform.” Chem. Commun., 49 (77) 8683–8685 (2013)

    CAS  Google Scholar 

  191. Chambers, LD, Stokes, KR, Walsh, FC, Wood, RJ, “Modern approaches to marine antifouling coatings.” Sur. Coat. Technol., 201 (6) 3642–3652 (2006)

    CAS  Google Scholar 

  192. Mooss, VA, Hamza, F, Zinjarde, SS, Athawale, AA, “Polyurethane films modified with polyaniline-zinc oxide nanocomposites for biofouling mitigation.” Chem. Eng. J., 359 1400–1410 (2019)

    CAS  Google Scholar 

  193. Pieper, RJ, Ekin, A, Webster, DC, Cassé, F, Callow, JA, Callow, ME, “Combinatorial approach to study the effect of acrylic polyol composition on the properties of crosslinked siloxane-polyurethane fouling-release coatings.” J. Coat. Technol. Res., 4 453–461 (2007)

    CAS  Google Scholar 

  194. Sommer, S, Ekin, A, Webster, DC, Stafslien, SJ, Daniels, J, VanderWal, LJ, Thompson, SE, Callow, ME, Callow, JA, “A preliminary study on the properties and fouling-release performance of siloxane–polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers.” Biofouling, 26 (8) 961–972 (2010)

    CAS  Google Scholar 

  195. Ekin, A, Webster, DC, Daniels, JW, Stafslien, SJ, Cassé, F, Callow, JA, Callow, ME, “Synthesis, formulation, and characterization of siloxane–polyurethane coatings for underwater marine applications using combinatorial high-throughput experimentation.” J. Coat. Technol. Res., 4 435–451 (2007)

    CAS  Google Scholar 

  196. Zhong, X, Hu, H, Yang, L, Sheng, J, Fu, H, “Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding.” ACS Appl. Mater. Interfaces, 11 (15) 14305–14312 (2019)

    CAS  Google Scholar 

  197. Tuteja, A, Choi, W, Mabry, JM, McKinley, GH, Cohen, RE, “Robust omniphobic surfaces.” Proc. Natl. Acad. Sci., 105 (47) 18200–18205 (2008)

    CAS  Google Scholar 

  198. Tuteja, A, Choi, W, Ma, M, Mabry, JM, Mazzella, SA, Rutledge, GC, McKinley, GH, Cohen, RE, “Designing superoleophobic surfaces.” Science, 318 (5856) 1618–1622 (2007)

    CAS  Google Scholar 

  199. Verho, T, Bower, C, Andrew, P, Franssila, S, Ikkala, O, Ras, RHA, “Mechanically durable superhydrophobic surfaces.” Adv. Mater., 23 (5) 673–678 (2011)

    CAS  Google Scholar 

  200. Zhang, K, Huang, S, Wang, J, Liu, G, “Transparent organic/nano-silica nanocomposite coating that is flexible, omniphobic, and harder than a 9H pencil.” Chem. Eng. J., 396 125211 (2020)

    CAS  Google Scholar 

  201. Rabnawaz, M, Liu, G, “Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings.” Angew. Chem. Int. Ed., 54 (22) 6516–6520 (2015)

    CAS  Google Scholar 

  202. Rabnawaz, M, Liu, G, Hu, H, “Fluorine-free anti-smudge polyurethane coatings.” Angew. Chem., 127 (43) 12913–12918 (2015)

    Google Scholar 

  203. Hu, H, Wang, J, Wang, Y, Gee, E, Liu, G, “Silicone-infused antismudge nanocoatings.” ACS Appl. Mater. Interfaces, 9 (10) 9029–9037 (2017)

    CAS  Google Scholar 

  204. Yoo, BM, Shin, HJ, Yoon, HW, Park, HB, “Graphene and graphene oxide and their uses in barrier polymers.” J. Appl. Polym. Sci., 131 (1) 39628 (2014)

    Google Scholar 

  205. Medhekar, NV, Ramasubramaniam, A, Ruoff, RS, Shenoy, VB, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties.” ACS Nano, 4 (4) 2300–2306 (2010)

    CAS  Google Scholar 

  206. Bouvet, G, Dang, N, Cohendoz, S, Feaugas, X, Mallarino, S, Touzain, S, “Impact of polar groups concentration and free volume on water sorption in model epoxy free films and coatings.” Prog. Org. Coat., 96 32–41 (2016)

    CAS  Google Scholar 

  207. Bonora, PL, Deflorian, F, Fedrizzi, L, “Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion.” Electrochim. Acta, 41 (7–8) 1073–1082 (1996)

    CAS  Google Scholar 

  208. Khan, F, Khan, A, Tuhin, MO, Rabnawaz, M, Li, Z, Naveed, M, “A novel dual-layer approach towards omniphobic polyurethane coatings.” RSC Adv., 9 (46) 26703–26711 (2019)

    CAS  Google Scholar 

  209. Ahmed, N, Niaz, B, Nauman, S, Javid, MT, “Functionalized carbon nanotubes based thermo-responsive shape memory blends with enhanced mechanical properties for potential robotics applications.” Iran. Polym. J., 30 67–80 (2021)

    CAS  Google Scholar 

  210. Christ, JF, Hohimer, CJ, Aliheidari, N, Ameli, A, Mo, C, Pötschke, P, “3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites.” Proc. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonalee Das.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakhmola, S., Das, S. & Dutta, K. Emerging research trends in the field of polyurethane and its nanocomposites: Chemistry, Synthesis, Characterization, Application in coatings and Future perspectives. J Coat Technol Res 21, 137–172 (2024). https://doi.org/10.1007/s11998-023-00841-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00841-z

Keywords

Navigation