Skip to main content

Advertisement

Log in

A Thermally Self-healing and Recyclable Polyurethane by Incorporating Halloysite Nanotubes via In Situ Polymerization

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The development of polymer-based composites with self-healing and recyclable capability has attracted the attention of several researchers for resource recycling and environment protection. In this work, Halloysite nanotubes (HNTs) reinforced polyurethane materials (PU) with self-healing and recyclable ability were constructed by in situ polymerization method. The mechanical, thermal amd morphological properties of PU and related composites were studied. The morphology of samples fracture surface ensured the homogeneous dispersion of HNTs in the polymer matrix. Moreover, thermal stability was improved with the incorporation of the HNTs. The tensile test showed strength increased with HNTs content increased. The tensile strength of composites increases from 23.38 to 34.92 MPa at 2 wt% HNTs. Therefore, the designed strategy provides a simple approach for preparing high mechanical properties, reprocessing and self-healing ability polyurethane composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Oladele, I. O., Omotosho, T. F., Adediran, A. A.: Polymer-based composites: an indispensable material for present and future applications. Int J Polym Sci. (2020)

  2. Wang, M., Pan, J., Wang, M., Sun, T., Ju, J., Tang, Y., Zhu, J.: High-Performance Triboelectric Nanogenerators Based on a Mechanoradical Mechanism. ACS Sustainable Chem. Eng. 8(9), 3865–3871 (2020)

    Article  CAS  Google Scholar 

  3. Xu, Z., Liang, Y., Ma, X., Chen, S., Yu, C., Wang, Y., Miao, M.: Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nat. Sustain. 3(1), 29–34 (2020)

    Article  Google Scholar 

  4. Ocando, C., Ecochard, Y., Decostanzi, M., Caillol, S., Avérous, L.: Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. Eur. Polym. J. 135: 109860 (2020)

  5. Lin, C.H., Ge, H., Wang, T.L., Huang, M., Ying, P.Y., Zhang, P., Levchenko, V.: A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. Polymer 206: 122894 (2020)

  6. Khan, Z. I., Mohamad, Z. B., Rahmat, A. R. B., Habib, U., Abdullah, N. A. S. B.: A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend. Prog Rubber Plast Re. 14777606211001074 (2021)

  7. Liu, Y., Zheng, J., Zhang, X., Du, Y., Yu, G., Li, K., Zhang, Y.: Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties. RSC Adv. 11(24), 14665–14677 (2021)

    Article  CAS  Google Scholar 

  8. Willocq, B., Odent, J., Dubois, P., Raquez, J.M.: Advances in intrinsic self-healing polyurethanes and related composites. RSC Adv. 10(23), 13766–13782 (2020)

    Article  CAS  Google Scholar 

  9. Xu, S., Zhao, B., Adeel, M., Mei, H., Li, L., Zheng, S.: Shape memory and self-healing properties of polymer-grafted Fe3O4 nanocomposites implemented with supramolecular quadruple hydrogen bonds. Polymer 172, 404–414 (2019)

    Article  CAS  Google Scholar 

  10. Wang, Y., Jiang, D., Zhang, L., Li, B., Sun, C., Yan, H., Guo, Z.: Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers. Nanotechnology 31(2), 025704 (2019)

  11. Rwei, S. P., Shiu, J. W., Way, T. F., Liao, C. Y., Yau, E. Z.: A Self‐healing and Thermal Radiation Shielding Magnetic Polyurethane of Reducing Retro Diels–Alder Reaction Temperature. J Inorgan Organometal Polym Mater. 1–12 (2021)

  12. Yang, S., Wang, S., Du, X., Cheng, X., Wang, H., Du, Z.: Mechanically and thermo-driven self-healing polyurethane elastomeric composites using inorganic–organic hybrid material as crosslinker. Polym. Chem. 11(6), 1161–1170 (2020)

    Article  CAS  Google Scholar 

  13. Zhao, B., Mei, H., Hang, G., Li, L., Zheng, S.: Shape recovery and reprocessable polyurethanes crosslinked with double decker silsesquioxane via Diels-Alder reaction. Polymer 230: 124042 (2021)

  14. Xu, Y., Chen, D.: Self-healing polyurethane/attapulgite nanocomposites based on disulfide bonds and shape memory effect. Mater. Chem. Phys. 195, 40–48 (2017)

    Article  CAS  Google Scholar 

  15. Du, W., Jin, Y., Shi, L., Shen, Y., Lai, S., Zhou, Y.: NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos Part B-Eng. 195, 108092 (2020)

  16. Wang, T., Yu, W. C., Zhou, C. G., Sun, W. J., Zhang, Y. P., Jia, L. C., Li, Z. M.: Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos Part B-Eng. 193: 108015 (2020)

  17. Wang, H., Xu, J., Du, X., Du, Z., Cheng, X., Wang, H.: A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection. Compos Part B-Eng. 109273 (2021)

  18. Bai, L., Lei, Y. L., Huang, H., Liang, Y., Yang, H.: Flexible Light-responsive Self-healing Polymeric Composite Film Based on Two-dimensional MoS2-Organic Halide Perovskite Longitudinal Heterostructure. Chem Eng J. 131450 (2021)

  19. Wang, Y., Huang, X., Zhang, X.: Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat commun 12(1), 1–10 (2021)

    Article  CAS  Google Scholar 

  20. Lecouvet, B., Horion, J., D’Haese, C., Bailly, C., Nysten, B.: Elastic modulus of halloysite nanotubes. Nanotechnology 24(10): 105704 (2013)

  21. Massaro, M., Lazzara, G., Noto, R., Riela, S.: Halloysite nanotubes: A green resource for materials and life sciences. Rend Lincei-Sci Fis. 1–9 (2020)

  22. Deng, S., Zhang, J., Ye, L., Wu, J.: Toughening epoxies with halloysite nanotubes. Polymer 49(23), 5119–5127 (2008)

    Article  CAS  Google Scholar 

  23. Jin, Y., Qiao, S., Zhang, L., Xu, Z.P., Smart, S., da Costa, J.C.D., Lu, G.Q.: Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. J Power Sources 185(2), 664–669 (2008)

    Article  CAS  Google Scholar 

  24. Baniasadi, H., Trifol, J., Ranta, A., Seppälä, J.: Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerization. Compos Part B-Eng. 211: 108655 (2021)

  25. Shi, L., Song, G., Li, P., Li, X., Pan, D., Huang, Y., Guo, Z.: Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole. Compos Sci Technol 201: 108522 (2021)

  26. Heo, Y., Sodano, H.A.: Self-Healing Polyurethanes with Shape Recovery. Adv. Funct. Mater. 24, 5261–5268 (2014)

    Article  CAS  Google Scholar 

  27. Shchukin, D.G., Sukhorukov, G.B., Price, R.R., Lvov, Y.M.: Halloysite nanotubes as biomimetic nanoreactors. Small 1(5), 510–513 (2005)

    Article  CAS  Google Scholar 

  28. Lin, C., Sheng, D., Liu, X., Xu, S., Ji, F., Dong, L., Yang, Y.: A self-healable nanocomposite based on dual-crosslinked Graphene Oxide/Polyurethane. Polymer 127, 241–250 (2017)

    Article  CAS  Google Scholar 

  29. Fu, Y., Gong, C., Wang, W., Zhang, L., Ivanov, E., Lvov, Y.: Antifouling thermoplastic composites with maleimide encapsulated in clay nanotubes. ACS Appl. Mater. Interfaces 9(35), 30083–30091 (2017)

    Article  CAS  Google Scholar 

  30. Deng, Y., White, G.N., Dixon, J.B.: Effect of structural stress on the intercalation rate of kaolinite. J colloid interf sci. 250(2), 379–393 (2002)

    Article  CAS  Google Scholar 

  31. Min, Y., Huang, S., Wang, Y., Zhang, Z., Du, B., Zhang, X., Fan, Z.: Sonochemical transformation of epoxy-amine thermoset into soluble and reusable polymers. Macromolecules 48(2): 316–322 (2015)

  32. Coleman, M. M., Lee, K. H., Skrovanek, D. J., Painter, P. C.: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane, Macromolecules. 19(8): 2149–2157 (1986)

  33. Pourmohammadi-Mahunaki, M., Haddadi-Asl, V., Roghani-Mamaqani, H., Koosha, M., Yazdi, M.: Preparation of polyurethane composites reinforced with halloysite and carbon nanotubes. Polym. Compos. 42(1), 450–461 (2021)

    Article  CAS  Google Scholar 

  34. Pourmohammadi-Mahunaki, M., Haddadi-Asl, V., Roghani-Mamaqani, H., Koosha, M., Yazdi, M.: Halloysite-reinforced thermoplastic polyurethane nanocomposites: Physico-mechanical, rheological, and thermal investigations. Polym. Compos. 41(8), 3260–3270 (2020)

    Article  CAS  Google Scholar 

  35. Wang, T.L., Hsieh, T.H.: Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polym. Degrad. Stabil. 55(1), 95–102 (1997)

    Article  CAS  Google Scholar 

  36. Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T.: In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Design. 47, 850–856 (2013)

    Article  CAS  Google Scholar 

  37. Gandini, A.: The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38(1), 1–29 (2013)

    Article  CAS  Google Scholar 

  38. Pramanik, N.B., Nando, G.B., Singha, N.K.: Self-healing polymeric gel via RAFT polymerization and Diels-Alder click chemistry. Polymer 69, 349–356 (2015)

    Article  CAS  Google Scholar 

  39. Defize, T., Thomassin, J.M., Alexandre, M., Gilbert, B., Riva, R., Jérôme, C.: Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks. Polymer 84, 234–242 (2016)

    Article  CAS  Google Scholar 

  40. Oliaie, H., Haddadi-Asl, V., Masoud Mirhosseini, M., Sahebi Jouibari, I., Mohebi, S., Shams, A.: Role of sequence of feeding on the properties of polyurethane nanocomposite containing halloysite nanotubes. Des monomers polym 22(1), 199–212 (2019)

    Article  CAS  Google Scholar 

  41. Xu, Y., Gao, C., Kong, H., Yan, D., Jin, Y.Z., Watts, P.C.: Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37(24), 8846–8853 (2004)

    Article  CAS  Google Scholar 

  42. Xu, Z., Gao, C.: In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16), 6716–6723 (2010)

    Article  CAS  Google Scholar 

  43. Cho, K., Yasir, M., Jung, M., Willcox, M. D., Stenzel, M. H., Rajan, G., Prusty, B. G.: Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Compos. Part B-Eng. 202: 108448 (2020)

  44. Gao, Y., Jing, H.W., Chen, S.J., Du, M.R., Chen, W.Q., Duan, W.H.: Influence of ultrasonication on the dispersion and enhancing effect of graphene oxide-carbon nanotube hybrid nanoreinforcement in cementitious composite. Compos B Eng 164, 45–53 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Plan of China (Project No. 2018YFB1107305), Zhejiang Provincial Natural Science Foundation, China (Project No. LTZ20E020001).

Funding

This work received grants from the National Key Research and Development Plan of China (Project No. 2018YFB1107305), Zhejiang Provincial Natural Science Foundation, China (Project No. LTZ20E020001).

Author information

Authors and Affiliations

Authors

Contributions

Yanqiu Huo: Writing-original draft, conceptualization, Writing-review & editing, Data curation. Huan Ge: Data analysis, Changhong Lin and Puyou Ying: Investigation, Methodology. Min Huang, Ping Zhang, Tao Yang and Gang Liu: Formal analysis, Resources. Jianbo Wu: Formal analysis. Vladimir Levchenko: Writing-review & editing.

Corresponding authors

Correspondence to Changhong Lin or Puyou Ying.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Adherence to National and International Regulations

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Ge, H., Lin, C. et al. A Thermally Self-healing and Recyclable Polyurethane by Incorporating Halloysite Nanotubes via In Situ Polymerization. Appl Compos Mater 29, 729–743 (2022). https://doi.org/10.1007/s10443-021-09989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09989-6

Keywords

Navigation