Skip to main content

Advertisement

Log in

Chitosan/alginate composite porous hydrogels reinforced with PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers: their physico-mechanical properties and ability to incorporate AgNP

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, porous chitosan/alginate hydrogels (CS/Alg) were fabricated by the addition of two reinforcing fillers, PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers, using a freeze-drying method. At the optimum ratio and mixing conditions, the porous hydrogels obtained after freeze-drying showed an interconnected porous structure with pore size in a range of 50–100 µm and porosity in a range of 80–85%. With the incorporation of PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers, the composite hydrogels (CS/Alg/PF) maintained their structure when submerged in deionized water and acidic and basic media, with low volume shrinkage. Water adsorption reached equilibrium within 30 min, and the percentage water uptake ratios of CS/Alg and CS/Alg/PF in deionized water increased from 1165% to 1391%, largely due to the presence of pineapple-leaf cellulose fibers. However, the presence of both PHEMA/PEI particles and pineapple-leaf cellulose fibers increased the compressive modulus of the resulting hydrogels from 0.028 MPa to 0.083 MPa. Moreover, the pineapple-leaf cellulose fibers improved the storage modulus of the hydrogels as revealed by dynamic mechanical analysis. CS/Alg/PF was also utilized as a template for loading silver nanoparticles (AgNP) through a reduction reaction of silver ions at ambient temperature without the use of any additional chemical reducing agents. The physico-mechanical properties and antibacterial activity of the AgNP-loaded CS/Alg/PF hydrogels were evaluated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11 
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Karimi AR, Rostaminejad B, Rahimi L, Khodadadi A, Khanmohammadi H, Shahriari A (2018) Chitosan hydrogels cross-linked with tris(2-(2-formylphenoxy)ethyl)amine: Swelling and drug delivery. Int J Biol Macromol 118:1863–1870. https://doi.org/10.1016/j.ijbiomac.2018.07.037

    Article  CAS  PubMed  Google Scholar 

  2. Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surface B 109:294–300. https://doi.org/10.1016/j.colsurfb.2013.04.006

    Article  CAS  Google Scholar 

  3. Xie Y, Liao X, Zhang J, Yang F, Fan Z (2018) Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int J Biol Macromol 119:402–412. https://doi.org/10.1016/j.ijbiomac.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  4. Jiang C, Wang X, Wang G, Hao C, Li X, Li T (2019) Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Composites Part B: Engineering 169:45–54. https://doi.org/10.1016/j.compositesb.2019.03.082

    Article  CAS  Google Scholar 

  5. Venkatesan J, Lowe B, Pallela R, Kim S (2015) Chitosan-Based Polysaccharide Biomaterials.1837–1850. https://doi.org/10.1007/978-3-319-16298-0_25

  6. Xu J, Tam M, Samaei S, Lerouge S, Barralet J, Stevenson MM, Cerruti M (2017) Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 48:247–257. https://doi.org/10.1016/j.actbio.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  7. Akakuru O, Isiuku B (2017) Chitosan Hydrogels and their Glutaraldehyde-Crosslinked Counterparts as Potential Drug Release and Tissue Engineering Systems - Synthesis, Characterization, Swelling Kinetics and Mechanism. J Phys Chem Biophys 07. https://doi.org/10.4172/2161-0398.1000256

  8. Amir Afshar H, Ghaee A (2016) Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohydr Polym 151:1120–1131. https://doi.org/10.1016/j.carbpol.2016.06.063

    Article  CAS  PubMed  Google Scholar 

  9. Horn MM, Martins VCA, Plepis AMdG (2015) Influence of collagen addition on the thermal and morphological properties of chitosan/xanthan hydrogels. Int J Biol Macromol 80:225–230. https://doi.org/10.1016/j.ijbiomac.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  10. Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR (2018) Graphene Oxide—A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering. ACS Appl Mater Interfaces 10(15):12441–12452. https://doi.org/10.1021/acsami.8b00699

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Qian J, Zhao N, Liu T, Xu W, Suo A (2017) Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr Polym 167:44–51. https://doi.org/10.1016/j.carbpol.2017.03.030

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928. https://doi.org/10.1016/j.biomaterials.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  13. Bierhalz ACK, Moraes ÂM (2017) Composite membranes of alginate and chitosan reinforced with cotton or linen fibers incorporating epidermal growth factor. Mater Sci Eng C 76:287–294. https://doi.org/10.1016/j.msec.2017.03.015

    Article  CAS  Google Scholar 

  14. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184

    Article  CAS  PubMed  Google Scholar 

  15. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184

    Article  CAS  PubMed  Google Scholar 

  16. Abreu FOMS, Bianchini C, Forte MMC, Kist TBL (2008) Influence of the composition and preparation method on the morphology and swelling behavior of alginate–chitosan hydrogels. Carbohydr Polym 74(2):283–289. https://doi.org/10.1016/j.carbpol.2008.02.017

    Article  CAS  Google Scholar 

  17. Gierszewska M, Ostrowska-Czubenko J, Chrzanowska E (2018) pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. Eur Polym J:282–290

    Article  Google Scholar 

  18. Wang G, Wang X, Huang L (2017) Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro. Biotechnology Biotechnological Equipment 31(4):766–773. https://doi.org/10.1080/13102818.2017.1332493

    Article  CAS  Google Scholar 

  19. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech Mater 93:134–144. https://doi.org/10.1016/j.mechmat.2015.10.018

    Article  Google Scholar 

  20. Kengkhetkit N, Amornsakchai T (2012) Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Ind Crops Prod 40:55–61. https://doi.org/10.1016/j.indcrop.2012.02.037

    Article  CAS  Google Scholar 

  21. Jenjob S, Tharawut T, Sunintaboon P (2012) Facile Synthesis of Silver Immobilized-Poly(Methyl Methacrylate)/Polyethyleneimine Core–Shell Particle Composites. Mater Sci Eng C 32:2068–2072. https://doi.org/10.1016/j.msec.2012.05.040

    Article  CAS  Google Scholar 

  22. Surajarusarn B, Traiperm P, Amornsakchai T (2019) Revisiting the Morphology, Microstructure, and Properties of Cellulose Fiber from Pineapple Leaf so as to Expand Its Utilization. Sains Malays 48:145–154. https://doi.org/10.17576/jsm-2019-4801-17

    Article  CAS  Google Scholar 

  23. Feiz S, Navarchian A (2019) Poly(vinyl alcohol) Hydrogel/Chitosan-Modified Clay Nanocomposites for Wound Dressing Application and Controlled Drug Release. Macromol Res 27:1–11. https://doi.org/10.1007/s13233-019-7046-z

    Article  CAS  Google Scholar 

  24. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369. https://doi.org/10.1007/s10616-015-9895-4

    Article  CAS  PubMed  Google Scholar 

  25. Teixeira-Costa BE, Silva Pereira BC, Lopes GK, Tristão Andrade C (2020) Encapsulation and antioxidant activity of assai pulp oil (Euterpe oleracea) in chitosan/alginate polyelectrolyte complexes. Food Hydrocolloids 109:106097. https://doi.org/10.1016/j.foodhyd.2020.106097

    Article  CAS  Google Scholar 

  26. Loh QL, Choong C (2013) Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.04372012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yallapu M, Kanikireddy V, Thomas V, Varaprasad K, Bojja S, Bajpai S, Raju K (2009) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82. https://doi.org/10.1016/j.jcis.2009.10.008

    Article  CAS  Google Scholar 

  28. Dragan ES, Dinu MV (2020) Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React Funct Polym 146:104372. https://doi.org/10.1016/j.reactfunctpolym.2019.104372

    Article  CAS  Google Scholar 

  29. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045. https://doi.org/10.1016/j.carbpol.2011.10.017

    Article  CAS  Google Scholar 

  30. Jancar J (2015) Composite materiomics. In. pp 903–944. https://doi.org/10.1016/B978-0-323-26434-1.00031-3

  31. Wei H, Shi N, Zhang J, Guan Y, Zhang J, Wan X (2014) PH-responsive inorganic-organic hybrid supramolecular hydrogels with jellyfish-like switchable chromic luminescence. Chem Comm 50. https://doi.org/10.1039/c4cc04000g

  32. Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y (2012) Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol–Gel Transitions. ACS Macro Lett 1(2):275–279. https://doi.org/10.1021/mz200195n

    Article  CAS  Google Scholar 

  33. Zhao Z, Ma J, Guo J, Gao Y, Aliu A (2016) Experimental Investigation of Rheological Properties of Fiber-laden Crosslinked Fracturing Fluids. J Nat Gas Sci Eng 32. https://doi.org/10.1016/j.jngse.2016.04.0

  34. Rasana N, Malavika D, Aparna R, Deepak T, Haritha PS, Jayanarayanan K (2018) Influence of multiphase fillers on mechanical, transport and rheological properties of polypropylene. Mater Today 5 (8, Part 3):16478–16486. https://doi.org/10.1016/j.jngse.2016.04.0

  35. Nguyen N-T, Liu J-H (2014) A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem E 45(5):2827–2833. https://doi.org/10.1016/j.jtice.2014.06.017

    Article  CAS  Google Scholar 

  36. Thomas V, Namdeo M, Murali Mohan Y, Bajpai SK, Bajpai M (2007) Review on Polymer, Hydrogel and Microgel Metal Nanocomposites: A Facile Nanotechnological Approach. J Macromol Sci A 45(1):107–119. https://doi.org/10.1080/10601320701683470

    Article  CAS  Google Scholar 

  37. Murali Mohan Y, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Mohana Raju K (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342(1):73–82. https://doi.org/10.1016/j.jcis.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Rashid S, Azeem M, Khan SA, Shah MM, Ahmad R (2019) Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. COLLOID SURFACE B 179:317–325. https://doi.org/10.1016/j.colsurfb.2019.04.016

    Article  CAS  Google Scholar 

  39. Krishnan S, Prokhorov Y, Hernández-Iturriaga M, Mota-Morales J, Vazquez-Lepe M, Kovalenko Y, Sanchez I, Luna-Barcenas G (2015) Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67:242–251. https://doi.org/10.1016/j.eurpolymj.2015.03.066

    Article  CAS  Google Scholar 

  40. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  41. Matsumura Y, Yoshikata K, Kunisaki S-i, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281. https://doi.org/10.1128/aem.69.7.4278-4281.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Development and Promotion of Science and Technology Talents Project (DPST) and Polymer Science and Technology Program, Faculty of Science, Mahidol University, are gratefully acknowledged for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panya Sunintaboon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noipitak, P., Inphonlek, S., Nillawong, M. et al. Chitosan/alginate composite porous hydrogels reinforced with PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers: their physico-mechanical properties and ability to incorporate AgNP. J Polym Res 28, 182 (2021). https://doi.org/10.1007/s10965-021-02476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02476-3

Keywords

Navigation