Skip to main content

Advertisement

Log in

Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell–cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell–cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarvold A, Smith JO, Tayton ER, Lanham SA, Chaudhuri JB, Turner IG, Oreffo RO (2013) The effect of porosity of a biphasic ceramic scaffold on human skeletal stem cell growth and differentiation in vivo. J Biomed Mater Res A 101:3431–3437. doi:10.1002/jbm.a.34646

    Article  Google Scholar 

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  CAS  Google Scholar 

  • Akay G, Birch MA, Bokhari MA (2004) Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials 25:3991–4000. doi:10.1016/j.biomaterials.2003.10.086

    Article  CAS  Google Scholar 

  • Akino K, Akita S, Yakabe A, Mineda T, Hayashi T, Hirano A (2008) Human mesenchymal stem cells may be involved in keloid pathogenesis. Int J Dermatol 47:1112–1117. doi:10.1111/j.1365-4632.2008.03380.x

    Article  CAS  Google Scholar 

  • Akram KM, Samad S, Spiteri MA, Forsyth NR (2013) Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res 14:9

  • Ashman A, Moss ML (1977) Implantation of porous polymethylmethacrylate resin for tooth and bone replacement. J Prosthet Dent 37:657–665

    Article  CAS  Google Scholar 

  • Atala A (2012) Regenerative medicine strategies. J Pediatr Surg 47:17–28. doi:10.1016/j.jpedsurg.2011.10.013

    Article  Google Scholar 

  • Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  CAS  Google Scholar 

  • Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32:1583–1590. doi:10.1016/j.biomaterials.2010.10.056

    Article  CAS  Google Scholar 

  • Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146

    Article  CAS  Google Scholar 

  • Boyd AS, Rodrigues NP, Lui KO, Fu X, Xu Y (2012) Concise review: immune recognition of induced pluripotent stem cells. Stem Cells 30:797–803. doi:10.1002/stem.1066

    Article  CAS  Google Scholar 

  • Bozkurt A, Deumens R, Beckmann C, OldeDamink L, Schugner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N (2009) In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30:169–179. doi:10.1016/j.biomaterials.2008.09.017

    Article  CAS  Google Scholar 

  • Braunwald E, Pfeffer MA (1991) Ventricular enlargement and remodeling following acute myocardial infarction: mechanisms and management. Am J Cardiol 68:1D–6D

    Article  CAS  Google Scholar 

  • Chang HI, Wangs Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D (ed) Regenerative medicine and tissue engineering - cells and biomaterials, chapter 27. InTech, Rijeka, Croatia, pp 569– 588. doi:10.5772/21983

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712. doi:10.1126/science.1064829

    Article  CAS  Google Scholar 

  • De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106. doi:10.1038/nbt1274

    Article  Google Scholar 

  • de Sousa EB, Casado PL, Moura Neto V, Duarte ME, Aguiar DP (2014) Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther 5:112. doi:10.1186/scrt501

    Article  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  Google Scholar 

  • Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG (1998) Surface topography can interfere with epithelial tissue migration. J Biomed Mater Res 42:245–257

    Article  CAS  Google Scholar 

  • Fukano Y, Usui ML, Underwood RA, Isenhath S, Marshall AJ, Hauch KD, Ratner BD, Olerud JE, Fleckman P (2010) Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res A 94:1172–1186. doi:10.1002/jbm.a.32798

    CAS  Google Scholar 

  • Goldner JS, Bruder JM, Li G, Gazzola D, Hoffman-Kim D (2006) Neurite bridging across micropatterned grooves. Biomaterials 27:460–472. doi:10.1016/j.biomaterials.2005.06.035

    Article  CAS  Google Scholar 

  • Grinnell F (1982) Cell-collagen interactions: overview. Methods Enzymol 82 Pt A:499–503

    Article  CAS  Google Scholar 

  • Haniffa MA, Wang XN, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CM, Collin MP (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–1604

    Article  CAS  Google Scholar 

  • Harley BA, Kim HD, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ (2008) Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J 95:4013–4024. doi:10.1529/biophysj.107.122598

    Article  CAS  Google Scholar 

  • Hatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C, Uchida Y (1999) Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25:439–445

    Article  CAS  Google Scholar 

  • Hausner T, Schmidhammer R, Zandieh S, Hopf R, Schultz A, Gogolewski S, Hertz H, Redl H (2007) Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir Suppl 100:69–72

    Article  CAS  Google Scholar 

  • Hong JK, Bang JY, Xu G, Lee JH, Kim YJ, Lee HJ, Kim HS, Kwon SM (2015) Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells. Int J Nanomedicine 10:1189–1200. doi:10.2147/IJN.S73096

    Article  CAS  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806. doi:10.1177/0022034509340867

    Article  CAS  Google Scholar 

  • Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456. doi:10.1002/jbm.820040309

    Article  CAS  Google Scholar 

  • Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98:25–35. doi:10.1161/01.RES.0000196867.12470.84

    Article  CAS  Google Scholar 

  • Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

    Article  CAS  Google Scholar 

  • Jurga M, Dainiak MB, Sarnowska A, Jablonska A, Tripathi A, Plieva FM, Savina IN, Strojek L, Jungvid H, Kumar A, Lukomska B, Domanska-Janik K, Forraz N, McGuckin CP (2011) The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials 32:3423–3434. doi:10.1016/j.biomaterials.2011.01.049

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. doi:10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  • Kawaguchi N, Smith AJ, Waring CD, Hasan MK, Miyamoto S, Matsuoka R, Ellison GM (2010) c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One 5:e14297. doi:10.1371/journal.pone.0014297

    Article  CAS  Google Scholar 

  • Kim S, Ahn SE, Lee JH, Lim DS, Kim KS, Chung HM, Lee SH (2007) A novel culture technique for human embryonic stem cells using porous membranes. Stem Cells 25:2601–2609. doi:10.1634/stemcells.2006-0814

    Article  CAS  Google Scholar 

  • Kim MY, Li DJ, Pham LK, Wong BG, Hui EE (2014) Microfabrication of high-resolution porous membranes for cell culture. J Memb Sci 452:460–469. doi:10.1016/j.memsci.2013.11.034

    Article  CAS  Google Scholar 

  • Koo MA, Kang JK, Lee MH, Seo HJ, Kwon BJ, You KE, Kim MS, Kim D, Park JC (2014) Stimulated migration and penetration of vascular endothelial cells into poly(l-lactic acid) scaffolds under flow conditions. Biomater Res 18:7. doi:10.1186/2055-7124-18-7

  • Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002. doi:10.1088/1748-6041/3/3/034002

    Article  CAS  Google Scholar 

  • Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB (2004) Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials 25:4699–4707. doi:10.1016/j.biomaterials.2003.11.034

    Article  CAS  Google Scholar 

  • Lee M, Wu BM, Dunn JC (2008) Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 87:1010–1016. doi:10.1002/jbm.a.31816

    Article  Google Scholar 

  • Lee IC, Lee YT, Yu BY, Lai JY, Young TH (2009) The behavior of mesenchymal stem cells on micropatterned PLLA membranes. J Biomed Mater Res A 91:929–938. doi:10.1002/jbm.a.32309

    Article  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  • Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 67:1105–1114. doi:10.1002/jbm.a.10101

    Article  Google Scholar 

  • Li DJ, Chai JK, Han YF, Sun TJ, Deng HP, Zhao JY, Liu LY (2011) Growth and migration of umbilical cord mesenchymal stem cells on polycarbonate membrane with different pore sizes. Zhonghua Yi Xue Za Zhi 91:699–702

    CAS  Google Scholar 

  • Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412. doi:10.1016/j.addr.2007.04.021

    Article  CAS  Google Scholar 

  • Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61:1084–1096. doi:10.1016/j.addr.2009.07.011

    Article  CAS  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  • Liu W, Li Y, Cunha S, Hayward G, Baskin L (2000) Diffusable growth factors induce bladder smooth muscle differentiation. In Vitro Cell Dev Biol Anim 36:476–484

    Article  CAS  Google Scholar 

  • Liu XH, Smith L, Wei G, Won YJ, Ma PX (2005) Surface engineering of nano-fibrous poly(l-lactic acid) scaffolds via self-assembly technique for bone tissue engineering. J Biomed Nanotechnol 1:54–60

    Article  CAS  Google Scholar 

  • Liu J, Nie H, Xu Z, Niu X, Guo S, Yin J, Guo F, Li G, Wang Y, Zhang C (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PLoS One 9:e111566. doi:10.1371/journal.pone.0111566

    Article  Google Scholar 

  • Lu Q, Ganesan K, Simionescu DT, Vyavahare NR (2004) Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25:5227–5237. doi:10.1016/j.biomaterials.2003.12.019

    Article  CAS  Google Scholar 

  • Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA 107:15211–15216. doi:10.1073/pnas.1006442107

    Article  CAS  Google Scholar 

  • Mahoney MJ, Chen RR, Tan J, Saltzman WM (2005) The influence of microchannels on neurite growth and architecture. Biomaterials 26:771–778. doi:10.1016/j.biomaterials.2004.03.015

    Article  CAS  Google Scholar 

  • Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD (2004) Biomaterials with tightly controlled pore size that promote vascular ingrowth ACS. Polymer Prepr 45:100–101

    CAS  Google Scholar 

  • Matsiko A, Gleeson JP, O’Brien FJ (2015) Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A 21:486–497. doi:10.1089/ten.TEA.2013.0545

    Article  CAS  Google Scholar 

  • McHugh KJ, Tao SL, Saint-Geniez M (2013) A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. J Mater Sci Mater Med 24:1659–1670. doi:10.1007/s10856-013-4934-1

    Article  CAS  Google Scholar 

  • Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116. doi:10.1006/jmcc.2001.1491

    Article  Google Scholar 

  • Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. doi:10.1016/j.biomaterials.2009.09.063

    Article  CAS  Google Scholar 

  • Nain AS, Wong JC, Amon CH, Sitti M (2006) Drawing suspended polymer micro-/nanofibers using glass micropipettes. Appl Phys Lett 89:183105–183107. doi:10.1063/1.2372694

    Article  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi:10.1038/nbt1374

    Article  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. doi:10.1016/S1369-7021(11)70058-X

    Article  Google Scholar 

  • O’Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, Prendergast PJ (2007) The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15:3–17

    Google Scholar 

  • Owen SC, Shoichet MS (2010) Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res A 94:1321–1331. doi:10.1002/jbm.a.32834

    Google Scholar 

  • Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540. doi:10.1038/385537a0

    Article  CAS  Google Scholar 

  • Pankov R, Cukierman E, Katz BZ, Matsumoto K, Lin DC, Lin S, Hahn C, Yamada KM (2000) Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol 148:1075–1090

    Article  CAS  Google Scholar 

  • Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298. doi:10.1021/ja060573x

    Article  CAS  Google Scholar 

  • Pawar K, Mueller R, Caioni M, Prang P, Bogdahn U, Kunz W, Weidner N (2011) Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels. Acta Biomater 7:2826–2834. doi:10.1016/j.actbio.2011.04.006

    Article  CAS  Google Scholar 

  • Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43:422–427

    Article  CAS  Google Scholar 

  • Peyton SR, Kalcioglu ZI, Cohen JC, Runkle AP, Van Vliet KJ, Lauffenburger DA, Griffith LG (2011) Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol Bioeng 108:1181–1193. doi:10.1002/bit.23027

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  Google Scholar 

  • Rosen MR, Brink PR, Cohen IS, Robinson RB (2004) Genes, stem cells and biological pacemakers. Cardiovasc Res 64:12–23. doi:10.1016/j.cardiores.2004.05.012

    Article  CAS  Google Scholar 

  • Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597. doi:10.1016/j.biocel.2003.10.007

    Article  CAS  Google Scholar 

  • Saunders KB, D’Amore PA (1992) An in vitro model for cell–cell interactions. In Vitro Cell Dev Biol 28A:521–528

    Article  CAS  Google Scholar 

  • Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218:115–124. doi:10.1006/dbio.1999.9565

    Article  CAS  Google Scholar 

  • Sha’ban M, Kim SH, Idrus RB, Khang G (2008) Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study. J Orthop Surg Res 3:17. doi:10.1186/1749-799X-3-17

    Article  Google Scholar 

  • Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:226–236. doi:10.1002/wnan.26

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  • Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly(epsilon-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7:1463–1468. doi:10.1021/nl0700346

    Article  CAS  Google Scholar 

  • Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, Buma P (2006) Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 34:64–71. doi:10.1177/0363546505280905

    Article  Google Scholar 

  • Tucker SP, Melsen LR, Compans RW (1992) Migration of polarized epithelial cells through permeable membrane substrates of defined pore size. Eur J Cell Biol 58:280–290

    CAS  Google Scholar 

  • Vagaska B, Bacakova L, Filova E, Balik K (2010) Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res 59:309–322

    CAS  Google Scholar 

  • Verfaillie CM (1992) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79:2821–2826

    CAS  Google Scholar 

  • Wang H, Pieper J, Peters F, van Blitterswijk CA, Lamme EN (2005) Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A 74:523–532. doi:10.1002/jbm.a.30232

    Article  Google Scholar 

  • Wang Y, Chang HI, Wertheim DF, Jones AS, Jackson C, Coombes AG (2007) Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery. Biomaterials 28:4619–4627. doi:10.1016/j.biomaterials.2007.07.006

    Article  CAS  Google Scholar 

  • Wang Y, Chang HI, Li X, Alpar O, Coombes AG (2009) Delivery of bioactive macromolecules from microporous polymer matrices: release and activity profiles of lysozyme, collagenase and catalase. Eur J Pharm Sci 37:387–394. doi:10.1016/j.ejps.2009.03.010

    Article  CAS  Google Scholar 

  • Wang Y, Hu J, Jiao J, Liu Z, Zhou Z, Zhao C, Chang LJ, Chen YE, Ma PX, Yang B (2014) Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35:8960–8969. doi:10.1016/j.biomaterials.2014.07.011

    Article  CAS  Google Scholar 

  • Wenceslau CV, Kerkis I, Lizier NF, Kerkis A (2013) De-Differentiation of somatic cells to a pluripotent state. In: Bhartiya D, Lenka N (eds) Pluripotent stem cells, chapter 3. InTech, Rijeka, Croatia, pp 39–63. doi:10.5772/54372

  • Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069–1084. doi:10.1083/jcb.201210152

  • Woo KM, Chen VJ, Ma PX (2003) Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67:531–537. doi:10.1002/jbm.a.10098

    Article  Google Scholar 

  • Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28:335–343. doi:10.1016/j.biomaterials.2006.06.013

    Article  CAS  Google Scholar 

  • Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692:103–119. doi:10.1016/j.bbamcr.2004.04.007

    Article  CAS  Google Scholar 

  • Xi J, Khalil M, Shishechian N, Hannes T, Pfannkuche K, Liang H, Fatima A, Haustein M, Suhr F, Bloch W, Reppel M, Saric T, Wernig M, Janisch R, Brockmeier K, Hescheler J, Pillekamp F (2010) Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J 24:2739–2751. doi:10.1096/fj.09-145177

    Article  CAS  Google Scholar 

  • Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, Nan X, Chen HX, Zhou JN, Lin YL, Zhang XM, Yu CZ, Yue W, Pei XT (2012) Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat 132:153–164. doi:10.1007/s10549-011-1577-0

    Article  CAS  Google Scholar 

  • Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62:438–446. doi:10.1002/jbm.10318

    Article  CAS  Google Scholar 

  • Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004) Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 15:1483–1497

    Article  CAS  Google Scholar 

  • Yang YL, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678–5688. doi:10.1016/j.biomaterials.2010.03.039

    Article  CAS  Google Scholar 

  • Yannas IV (1992) Tissue regeneration by use of collagen–glycosaminoglycan copolymers. Clin Mater 9:179–187

    Article  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi:10.1126/science.1151526

    Article  CAS  Google Scholar 

  • Yuan N, Tian W, Sun L, Yuan R, Tao J, Chen D (2014) Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res 9:1014–1019. doi:10.4103/1673-5374.133160

    Article  Google Scholar 

  • Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572. doi:10.1089/107632701753213183

    Article  CAS  Google Scholar 

  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921. doi:10.1006/jmcc.2001.1367

    Article  CAS  Google Scholar 

  • Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y (2010) The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater 6:3021–3028. doi:10.1016/j.actbio.2010.02.030

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi:10.1089/107632701300062859

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by EU project „Biocardiostim“ (No. VP1-3.1-ŠMM-10-V-02-029).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiva Bironaitė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bružauskaitė, I., Bironaitė, D., Bagdonas, E. et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68, 355–369 (2016). https://doi.org/10.1007/s10616-015-9895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9895-4

Keywords

Navigation