Skip to main content
Log in

Poly(vinyl alcohol) Hydrogel/Chitosan-Modified Clay Nanocomposites for Wound Dressing Application and Controlled Drug Release

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) hydrogel films containing (1-5% (w/w)) chitosan-modified montmorrilonite (CsMMT) were prepared through phase separation method for wound dressing application. The prepared nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of organoclay content on gel fraction, water vapor permeability, water uptake and tensile/rheological properties of films were also investigated. The XRD patterns and TEM micrographs show intercalated/partially exfoliated morphology of nanocomposites. The strong interactions between the polymer matrix and silicate layers via the formation of hydrogen bonds increase the gel fraction and tensile strength of hydrogels. It was found that the equilibrium water absorption, water diffusion coefficient and water vapor permeability were strongly affected by crystallite size of PVA macromolecules and tortuous path originated from CsMMT. The most appropriate results for the examined properties were obtained for 3% CsMMT content (w/w). The rheological results indicated a dominant elastic property and strong network structure for the hydrogels. The wound dressing films were loaded with nitrofurazone (NFZ) and their drug release behavior was studied at simulated wound condition. The drug loading and the release rate of NFZ showed a dependency on the quantity of CsMMT in the membrane. The interaction between NFZ and CsMMT together with tortuosity due to the presence of silicate layers, controlled the duration of total drug release to over 6 days. A Fickian diffusion mechanism was found for the drug release from the nanocomposite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Sung, M. R. Hwang, J. O. Kim, J. H. Lee, Y. I. Kim, J. H. Kim, and H. G. Choi, Int. J. Pharm., 392, 232 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. S. Feiz, A. H. Navarchian, and O. M. Jazani, Iran. Polym. J., 27, 193 (2018).

    Article  CAS  Google Scholar 

  3. M. Kouchak, A. Ameri, B. Naseri, and S. K. Boldaji, Iran. J. Basic. Med. Sci., 17, 14 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. C. M. Paranhos, B. G. Soares, R. N. Oliveira, and L. A. Pessan, Macromol. Mater. Eng., 292, 620 (2007).

    Article  CAS  Google Scholar 

  5. M. Sirousazar, M. Kokabi, Z. Hassan, and A. Bahramian, J. Macromol. Sci. B, 51, 1335 (2012).

    Article  CAS  Google Scholar 

  6. M. Kokabi, M. Sirousazar, and Z. M. Hassan, Eur. Polym. J., 43, 773 (2007).

    Article  CAS  Google Scholar 

  7. T. M. Wu and C. Y. Wu, Polym. Degrad. Stab., 91, 2198 (2006).

    Article  CAS  Google Scholar 

  8. K. Kabiri, H. Mirzadeh, M. J. Zohuriaan–Mehr, and M. Daliri, Polym. Int., 58, 1252 (2009).

    Article  CAS  Google Scholar 

  9. E. Părpăriţă, C. N. Cheaburu, S. F. Pațachia, and C. Vasile, Acta Chemica Iasi, 22, 75 (2014).

    Article  Google Scholar 

  10. H. Zheng, Y. Du, J. Yu, R. Huang, and L. Zhang, J. Appl. Polym. Sci., 80, 2558 (2001).

    Article  CAS  Google Scholar 

  11. S. Komiya, E. Otsuka, Y. Hirashima, and A. Suzuki, Prog. Nat. Sci. Mater. Int., 21, 375 (2011).

    Article  Google Scholar 

  12. F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. H. Nakajima, Z. Wang, and K. Strawhecker, MRS Online Proceedings Library Archive, 791, Q4.10.1 (2003).

    Google Scholar 

  14. D. Mondal, M. M. R. Mollick, B. Bhowmick, D. Maity, M. K. Bain, D. Rana, A. Mukhopadhyay, K. Dana, and D. Chattopadhyay, Prog. Natl. Sci. Mater. Int., 23, 579 (2013).

    Article  Google Scholar 

  15. C. M. Tang, Y. H. Tian, and S. H. Hsu, Materials, 8, 4895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Mao, Q. Gu, and D. H. Gregoy, Materials, 8, 2191 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  17. A. Karimi, W. Daud, and W. M. Ashri, Polym. Compos., 38, 1135 (2015).

    Article  CAS  Google Scholar 

  18. K. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000).

    Article  CAS  Google Scholar 

  19. H. R. Alamery, M. D. I. Hatem, M. S. Ahmad, and M. N. Amira, Aust. J. Basic. Appl. Sci., 9, 295 (2015).

    CAS  Google Scholar 

  20. S. N. Alhosseini, F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, S. Kargozar, and N. Jalali, Int. J. Nanomedicine, 7, 25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. O. Tretinnikov and S. Zagorskaya, J. Appl. Spectrosc., 79, 521 (2012).

    Article  CAS  Google Scholar 

  22. K. Choo, Y. C. Ching,, C. H. Chuah, S. Julai, and N. S. Liou, Materials, 9, 644 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  23. K. Majdzadeh–Ardakani, A. H. Navarchian, and F. Sadeghi, Carbohydr. Polym., 79, 547 (2010).

    Article  CAS  Google Scholar 

  24. M. Lim, D. Kim, H. Han, S. B. Khan, and J. Seo, Polym. Compos., 36, 660 (2015).

    Article  CAS  Google Scholar 

  25. S. Bajpai, J. Appl. Polym. Sci., 80, 2782 (2001).

    Article  CAS  Google Scholar 

  26. P. Duangkaew and J. Wootthikanokkhan, J. Appl. Polym. Sci., 109, 452 (2008).

    Article  CAS  Google Scholar 

  27. C. Johansson and F. Clegg, J. Appl. Polym. Sci., 132, 1 (2015).

    Google Scholar 

  28. N. A. Peppas and N. M. Franson, J. Polym. Sci., Part B: Polym. Phys., 21, 983 (1983).

    CAS  Google Scholar 

  29. Y. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 81, 1624 (2001).

    Article  CAS  Google Scholar 

  30. Q. Soundararajah, B. Karunaratne, and R. Rajapakse, J. Compos. Mater., 44, 303 (2010).

    Article  CAS  Google Scholar 

  31. H. M. Jeong, B. C. Kim, and E. H. Kim, J. Mater. Sci., 40, 3783 (2005).

    Article  CAS  Google Scholar 

  32. R. Pereira, A. Carvalho, D. C. Vaz, M. H. Gil, A. Mendes, and P. Bártolo, Int. J. Biol. Macromol., 52, 221 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. H. Yu, X. Xu, X. Chen, J. Hao, and X. Jing, J. Appl. Polym. Sci., 101, 2453 (2006).

    Article  CAS  Google Scholar 

  34. D. Calvet, J. Y. Wong, and S. Giasson, Macromolecules, 37, 7762 (2004).

    Article  CAS  Google Scholar 

  35. E. Butnaru, C. N. Cheaburu, O. Yilmaz, G. M. Pricope, and C. Vasile, High Perform. Polym., 28, 1124 (2016).

    Article  CAS  Google Scholar 

  36. F. Deng, C. Dong, and Y. Liu, Mol. BioSyst., 8, 1446 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. X. Wang, Y. Du, and J. Luo, Nanotechnology, 19, 065707 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. J. Siepmann and F. Siepmann, J. Control. Release, 161, 351 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. T. Higuchi, J. Pharm. Sci., 50, 874 (1961).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Navarchian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feiz, S., Navarchian, A.H. Poly(vinyl alcohol) Hydrogel/Chitosan-Modified Clay Nanocomposites for Wound Dressing Application and Controlled Drug Release. Macromol. Res. 27, 290–300 (2019). https://doi.org/10.1007/s13233-019-7046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7046-z

Keywords

Navigation