Skip to main content

Advertisement

Log in

Preparation of floating polymer-valsartan delivery systems using supercritical CO2

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study investigates pharmaceutical polymers (Soluplus®, HPMCAS, and Eudragit® E100) and supercritical CO2-assisted process for preparation of floating valsartan delivery systems. Tested process (at pressure of 30 MPa and temperature of 100 °C during 2 h) enabled preparation of stable porous valsartan formulations which was confirmed with FESEM and mercury intrusion porosimetry analysis. The bulk density of obtained formulations was lower than 550 kg/m3. FTIR, DSC, and PXRD analysis indicated that there was no chemical interaction between the drug and polymers and that amorphous solid dispersions were obtained. Formulations with Soluplus® and HPMCAS retained its buoyancy in 0.1 M HCl for longer than 24 h, while formulation with Eudragit® E100 retained its buoyancy up to 2 h. Controlled valsartan release was influenced by solubility of polymers in the tested release medium, which was confirmed by UV/VIS spectroscopy. The obtained results provided framework for further development of floating drug delivery system using an environmental friendly process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EUD:

Eudragit® E100

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

PBS:

Phosphate buffer solution

ScCO2:

Supercritical carbon dioxide

SOL:

Soluplus®

VAL:

Valsartan

References

  1. Sonje HA, Aher SP, Patil RS, Yadav GJ, Maru AD (2015) Development and evaluation of gastroretentive floating microspheres of valsartan. J Curr Pharm Res 5:1539–1549

    Article  CAS  Google Scholar 

  2. Reddy KS, Swain SK, Chowdary KPR, Prasad SVUM (2018) Optimization of valsartan SR floating tablet formulation by 22 factorial design and multiple regression technique. Int Res J Pharm Med Sci 1:11–15

    Google Scholar 

  3. Pathak S, Pandey H, Shah SK (2019) Formulation and Evaluation of Floating Matrix Tablets of Sacubitril and Valsartan. J Drug Deliv Ther 9:298–309

    Article  Google Scholar 

  4. Rahamathulla M, Saisivam S, Gangadharappa HV (2019) Development of Valsartan Floating Matrix Tablets Using Low Density Polypropylene Foam Powder: In vitro and In vivo Evaluation. AAPS PharmSciTech 20:35

    Article  Google Scholar 

  5. Mounika S, Anusha P, Devandla A (2017) Formulation and in vitro evaluation of gastroretentive floating drug delivery of valsartan. Int J Pharm Bio Sci 7:143–148

    CAS  Google Scholar 

  6. Sucharitha M, Anjali DN, Vishnu PP, Shyamala JVC (2013) Sharma. Formulation and evaluation of gastroretentive floating tablets of valsartan, World J Pharm Pharm Sci 3:689–702

    Google Scholar 

  7. Tousif Ayyub K, Moravkara K, Maniruzzamanb M, Amina P (2019) Effect of melt extrudability and melt binding efficiency of polyvinyl caprolactam polyvinyl acetate polyethylene glycol graft copolymer (Soluplus®) on release pattern of hydrophilic and high dose drugs. Mater Sci Eng C 99:563–574

    Article  CAS  Google Scholar 

  8. Obaidat R, Taani BA, Ailabouni A (2017) Effect of different polymeric dispersions on In-vitro dissolution rate and stability of celecoxib class II drug. J Polym Res 24:58

    Article  Google Scholar 

  9. Dj M, Cvijić S, Dobričić V, Mitrić M, Djuriš J, Ibrić S (2018) Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach . Eur J Pharm Sci 124:188–198

    Article  Google Scholar 

  10. Marks JA, Wegiel LA, Taylor LS, Edgar KJ (2014) Pairwise polymer blends for oral drug delivery. J Pharm Sci 103:2871–2883

    Article  CAS  Google Scholar 

  11. Naveen C, Shastri N, Tadikonda RR (2012) Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm Sin B 2:502–508

    Article  CAS  Google Scholar 

  12. Youn Y-S, Oh JH, Ahn KH, Kim M, Kim J, Lee Y-W (2011) Dissolution rate improvement of valsartan by low temperature recrystallization in compressed CO2: Prevention of excessive agglomeration. J Supercrit Fluids 59:117–123

    Article  CAS  Google Scholar 

  13. Guinet Y, Paccou L, Danède F, Derollez P, Hédoux A (2017) Structural description of the marketed form of valsartan: A crystalline mesophase characterized by nanocrystals and conformational disorder. Int J Pharm 526:209–216

    Article  CAS  Google Scholar 

  14. Greenhalgh DJ, Williams AC, Timmins P, York P (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88(11):1182–1190

    Article  CAS  Google Scholar 

  15. Prasanthi S, Vidyavathi M (2017) Optimization of Valsartan Floating Tablets by 32 Factorial Design. Asian J Pharm 11:625–634

    Google Scholar 

  16. Bhattacharya S (2019) Statistical interpretation and optimization of valsartan floating tablets using box-behnken design. Int J App Pharm 11:44–53

    Article  CAS  Google Scholar 

  17. Kazarian SG (2000) Polymer Processing with Supercritical Fluids. Pol Sci 42:78–101

    Google Scholar 

  18. Milovanovic S, Markovic D, Ivanovic J (2019) Added-value porous materials for controlled thymol release obtained by supercritical CO2 impregnation process. Cell Polym 38:153–166

    Article  CAS  Google Scholar 

  19. Reverchon E (1997) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:1–37

    Article  CAS  Google Scholar 

  20. Milovanovic S, Djuris J, Dapčević A, Medarevic D, Ibric S, Zizovic I (2019) Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym Testing 76:54–64

    Article  CAS  Google Scholar 

  21. Djuris J, Milovanovic S (2019) Medarevic Dj, Dobricic V, Dapcevic A, Ibric S. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. Int J Pharm 554:190–200

    Article  CAS  Google Scholar 

  22. Obaidat R, Alnaief M, Jaeger P (2017) Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology. Pharm Dev Technol 13:1–9

    Google Scholar 

  23. Franco P, De Marco I (2020) Eudragit: a novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation. Polymers 12:1–16

    Google Scholar 

  24. Duarte ARC, Santo VE, Alves A, Silva SS, Moreira-Silva J, Silva TH, Marques AP, Sousa RA, Gomes ME, Mano JF, Reis RL (2013) Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. J Supercrit Fluids 79:177–185

    Article  CAS  Google Scholar 

  25. Rad HB, Sabet JK, Varaminian F (2019) Determination of valsartan solubility in supercritical carbon dioxide: Experimental measurement and molecular dynamics simulation. J Mol Liq 294:111636

    Article  Google Scholar 

  26. Di Maio E, Kiran E (2018) Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J Supercrit Fluids 134:157–166

    Article  Google Scholar 

  27. Sorrentino L, Aurilia M, Iannace S (2011) Polymeric foams from high-performance thermoplastics. Adv Polym Technol 30:234–243

    Article  CAS  Google Scholar 

  28. Kuska R, Milovanovic S, Frerich S, Ivanovic J (2019) Thermal analysis of polylactic acid under high CO2 pressure applied in supercritical impregnation and foaming process design. J Supercrit Fluids 144:71–80

    Article  CAS  Google Scholar 

  29. Zhao S, Pan C, Xin Z, Li Y, Qin W, Zhou S (2019) 13X zeolite as Difunctional nucleating agent regulating the crystal form and improving the foamability of blocked copolymerized polypropylene in supercritical CO2 foaming process. J Polym Res 26:58

    Article  Google Scholar 

  30. Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Chandra A, Williams DJ, Howdle SM, Shakesheff KM (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 14:64–77

    Article  CAS  Google Scholar 

  31. Nakamichi K, Yasuura H, Fukui H, Oka M, Izumi S (2001) Evaluation of a floating dosage form of nicardipine hydrochloride and hydroxypropylmethylcellulose acetate succinate prepared using a twin-screw extruder. Int J Pharm 218:103–112

    Article  CAS  Google Scholar 

  32. Fukuda M, Peppas NA, McGinity JW (2006) Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release 115:121–129

    Article  CAS  Google Scholar 

  33. Kamisetti RR, Abbulu K, Sudhakar M (2011) Development, characterization and solubility study of solid dispersion of Valsartan. J Chem Pharm Res 3:180–187

    Google Scholar 

  34. Cappello B, Di Maio C, Iervolino M, Miro A (2006) Improvement of solubility and stability of valsartan by hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 54:289–294

    Article  CAS  Google Scholar 

  35. Smith BC (2016) Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy 31:36–39

    CAS  Google Scholar 

  36. Barbosa J de AB, de França CA, Gouveia JJ de S, Gouveia GV, da Costa MM, de Oliveira HP (2019) Eudragit E100/poly(ethylene oxide) electrospun fibers for DNA removal from aqueous solution. J Appl Polym Sci 47479

  37. Zhang Q, Zhao Y, Zhao Y, Ding Z, Fan Z, Zhang H, Liu M, Wang Z, Han J (2018) Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surf, B 172:118–126

    Article  CAS  Google Scholar 

  38. Hu Y, Zhang S, Han D, Ding Z, Zeng S, Xiao X (2018) Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release. J Polym Res 25:148

    Article  Google Scholar 

  39. Mahesh B, Kathyayani D, Gowda DC, Mrutunjaya K (2020) Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. J Polym Res 27:278

    Article  CAS  Google Scholar 

  40. Skotnicki M, Gaweł A, Cebe P, Pyda M (2013) Thermal behavior and phase identification of Valsartan by standard and temperature-modulated differential scanning calorimetry. Drug Dev Ind Pharm 10:1508–1514

    Article  Google Scholar 

  41. Shetiya P, Vidyadhara S, Ramu A, Sasidhar RL, Viswanadh K (2015) Development and characterization of a novel nanosuspension based drug delivery system of valsartan: A poorly soluble drug. Asian J Pharm 9:29–34

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135). Authors thank Hemofarm (Vršac, Serbia) for providing Hydroxypropyl methylcellulose acetate succinate (HPMCAS) and Valsartan. Authors thank Dr. Miroslav Stankovic from Institute of Chemistry, Technology and Metallurgy (University of Belgrade) for assistance in mercury porosimetry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoja Milovanovic.

Ethics declarations

Conflict of interest

Authors declare that no conflicts of interest exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional  claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 433 KB)

Supplementary file2 (DOCX 328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanovic, S., Djuris, J., Dapčević, A. et al. Preparation of floating polymer-valsartan delivery systems using supercritical CO2. J Polym Res 28, 74 (2021). https://doi.org/10.1007/s10965-021-02440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02440-1

Keywords

Navigation