Skip to main content
Log in

Development of Valsartan Floating Matrix Tablets Using Low Density Polypropylene Foam Powder: In vitro and In vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main purpose of the study was to develop valsartan floating tablets (VFT) via non-effervescent technique using low density polypropylene foam powder, carbopol, and xanthan gum by direct compression. Before compression, the particulate powdered mixture was evaluated for pre-compression parameters. The prepared valsartan tablets were evaluated for post-compression parameters, swelling index, floating lag time, in vitro buoyancy studies, and in vitro and in vivo X-ray imaging studies in albino rabbits. The result of all formulations for pre- and post-compression parameters were within the limits of USP. FTIR and DSC studies revealed no interaction between the drug and polymers used. The prepared floating tablets had good swelling and floating capabilities for more than 12 h with zero floating lag time. The release of valsartan from optimized formulation NF-2 showed sustained release up to 12 h; which was found to be non-Fickian release. Moreover, the X-ray imaging of optimized formulation (NF-2) revealed that tablet was constantly floating in the stomach region of the rabbit, thereby indicating improved gastric retention time for more than 12 h. Consequently, all the findings and outcomes have showed that developed valsartan matrix tablets could be effectively used for floating drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gangadharappa HV, Pramod Kumar TM, Shivakumar HG. Gastric floating drug delivery systems. Ind J Pharm Educ Res. 2007;41:295–305.

    Google Scholar 

  2. Lopes CM, Bettencourt C, Rossi A, Buttini BP. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144–58. https://doi.org/10.1016/j.ijpharm.2016.05.016.

    Article  CAS  PubMed  Google Scholar 

  3. Garg T, Kumar A, Rath G, Goyal AK. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer. Crit Rev Ther Drug Carrier Syst. 2014;31:531–57. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2014011104.

    Article  PubMed  Google Scholar 

  4. Kumar M, Kaushik D. An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat Drug Deliv Formul. 2018;12(2):84–92. https://doi.org/10.2174/1872211312666180308150218.

    Article  CAS  PubMed  Google Scholar 

  5. Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V. Ofloxacin loaded gellan/PVA nanofibers-synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater Sci Eng C. 2017;71:611–9. https://doi.org/10.1016/j.msec.2016.10.051.

    Article  CAS  Google Scholar 

  6. Wang J, Tabata Y, Bi D, Morimoto K. Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres. J Control Release. 2001;73:223–31. https://doi.org/10.1016/S0168-3659(01)00288-7.

    Article  CAS  PubMed  Google Scholar 

  7. Singh B, Chakkal SK, Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS Pharm Sci Tech. 2006;7:E2–E10. https://doi.org/10.1208/pt070103.

    Article  Google Scholar 

  8. Chaturvedi K, Umadevi S, Vaghani S. Floating matrix dosage form for propranolol hydrochloride based on gas formation technique: development and in vitro evaluation. Sci Pharm. 2010;78(4):927–40. https://doi.org/10.3797/scipharm.0909-02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deshpande AA, Shah NH, Rhodes CT, Malick W. Development of a novel controlled-release system for gastric retention. Pharm Res. 1997;14:815–9. https://doi.org/10.1023/A:1012171010492.

    Article  CAS  PubMed  Google Scholar 

  10. Upadhye AA, Ambike AA, Mahadik KR, Paradkar A. Application of ion exchange resin in floating drug delivery system. Drug Dev Ind Pharm. 2008;34:1117–24. https://doi.org/10.1080/03639040801973982.

    Article  CAS  PubMed  Google Scholar 

  11. Atyabi F, Sharma HL, Mohammad HA, Fell JT. A novel floating system using ion exchange resins. In Proc Int Symp Control Release Bioact Mater. 1994;21:806–807.

  12. Atyabi F, Sharma HL, Mohammad HAH, Fell JT. Controlled drug release from coated floating ion exchange resin beads. J Control Release. 1996;42:25–8.

    Article  CAS  Google Scholar 

  13. Arora S, Ali J, Ahuja A, Khar RK, Baboota S. Floating drug delivery systems: a review. AAPS Pharm Sci Tech. 2005;6:E372–90. https://doi.org/10.1208/pt060347.

    Article  Google Scholar 

  14. Meka L, Kesavan B, Chinnala KM, Vobalaboina V, Yamsani MR. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique: in vitro evaluation. AAPS PharmSciTech. 2008;9:612–9. https://doi.org/10.1208/s12249-008-9090-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gambhire MN, Ambade KW, Kurmi SD, Kadam VJ, Jadhav KR. Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech. 2007;8:E1–9. https://doi.org/10.1208/pt0803073.

    Article  Google Scholar 

  16. Chen YC, Ho HO, Chiu CC, Thau-Sheu M. Development and characterization of a gastroretentive dosage form composed of chitosan and hydroxyethyl cellulose for alendronate. Drug Des Dev Ther. 2014;8:67–78. https://doi.org/10.2147/DDDT.S52791.

    Article  CAS  Google Scholar 

  17. Jiménez-Castellanos MR, Zia H, Rhodes CT. Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application. Int J Pharm. 1994;105:65–70. https://doi.org/10.1016/0378-5173(94)90236-4.

    Article  Google Scholar 

  18. Alladi KK, Suram R, Bela M, Kiran S, Ramesh V, Narendera Y. Formulation and characterization of clarithromycin controlled release bioadhesive tablets. J Chem Pharm Res. 2011;3:684–90.

    CAS  Google Scholar 

  19. Ponchel G, Irache JM. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev. 1998;34:191–219. https://doi.org/10.1016/S0169-409X(98)00040-4.

    Article  CAS  PubMed  Google Scholar 

  20. Sujja-Areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6:207–17. https://doi.org/10.1016/S0928-0987(97)00072-9.

    Article  CAS  PubMed  Google Scholar 

  21. Zuelger S, Fassihi R, Lippold BC. Polymer particle erosion controlling drug release II. Swelling investigations to clarify the release mechanism. Int J Pharm. 2002;247:23–37. https://doi.org/10.1016/S0378-5173(02)00362-9.

    Article  Google Scholar 

  22. Kedzierewicz F, Thouvenot P, Lemut J, Etienne A, Hoffman M, Maincent P. Evaluation of peroral silicone dosage forms in humans by gamma-scintigraphy. J Control Release. 1999;58:195–205. https://doi.org/10.1016/S0168-3659(98)00154-0.

    Article  CAS  PubMed  Google Scholar 

  23. Fix JA, Cargill R, Engle K. Controlled gastric emptying. III. GR time of a nondisintegrating geometric shape in human volunteers. Pharm Res. 1993;10:1087–19. https://doi.org/10.1023/A:1018939512213.

    Article  CAS  PubMed  Google Scholar 

  24. Cargill R, Caldwell LJ, Engle K, Fix JA, Porter PA, Gardner CR. Controlled gastric emptying. 1. Effects of physical properties on gastric residence times of nondisintegrating geometric shapes in beagle dogs. Pharm Res. 1988;5:533–6. https://doi.org/10.1023/A:1015981627525.

    Article  CAS  PubMed  Google Scholar 

  25. El-Said IA, Aboelwafa AA, Khalil RM, ElGazayerly ON. Baclofen novel gastroretentive extended release gellan gum superporous hydrogel hybrid system: in vitro and in vivo evaluation. Drug Deliv. 2016;23:101–12. https://doi.org/10.3109/10717544.2014.905654.

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54:53–77. https://doi.org/10.1016/S0169-409X(01)00243-5.

    Article  CAS  PubMed  Google Scholar 

  27. Rajeswari RK, Abbulu K, Sudhakar M, Roopakarki, Rajkumar B. Design and in vitro evaluation of modified release Valsartan hydrogels. Int J Drug Deliv. 2011;3:648–60.

    Google Scholar 

  28. Fabregas JL, Claramunt J, Cucala J, Pous R, Siles A. “In vitro” testing of an antacid formulation with prolonged GR time (Almagate Flot-Coat®). Drug Dev Ind Pharm. 1994;20:1199–212. https://doi.org/10.3109/03639049409038361.

    Article  CAS  Google Scholar 

  29. Prajapati VD, Jani GK, Khutliwala TA, Zala BS. Raft forming system-an upcoming approach of gastroretentive drug delivery system. J Control Release. 2013;168:151–65. https://doi.org/10.1016/j.jconrel.2013.02.028.

    Article  CAS  PubMed  Google Scholar 

  30. Kawashima Y, Niwa T, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. J Pharm Sci. 1992;81:135–40. https://doi.org/10.1002/jps.2600810207.

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Xu H, Li S, Li Q, Zhang W, Ye T, et al. A novel gastro-floating multiparticulate system for dipyridamole based on a porous and low-density matrix core: in vitro and in vivo evaluation. Int J Pharm. 2014;461:540–8. https://doi.org/10.1016/j.ijpharm.2013.12.024.

    Article  CAS  PubMed  Google Scholar 

  32. Davis S, Stockwell A, Taylor M, Hardy J, Whalley D, Wilson CG. The effect of density on the gastric emptying of single- and multiple-unit dosage forms. Pharm Res. 1986;3:208–13. https://doi.org/10.1023/A:1016334629169.

    Article  CAS  PubMed  Google Scholar 

  33. Malik R, Garg T, Goyal AK, Rath G. Polymeric nanofibers: targeted gastro-retentive drug delivery systems. J Drug Target. 2015;23:109–24. https://doi.org/10.3109/1061186X.2014.965715.

    Article  CAS  PubMed  Google Scholar 

  34. Bader M. Renin-angiotensin aldosterone system. In: Offermanns S, Rosenthal W, editors. Encyclopedic reference of molecular pharmacology. Berlin, Germany: Springer; 2004. p. 810–4.

  35. Diovan. [Electronic version]. e-CPS. Retrieved 28th December 2009.

  36. Prasanthi S, Vidyavathi M. Optimization of Valsartan Floating Tablets by 32 Factorial Design. Asian J Pharm. 2017;11(3):S625–34. https://doi.org/10.22377/ajp.v11i03.1470.

    Article  CAS  Google Scholar 

  37. Swathi G, Choudary KPR, Rao AM. Formulation development of valsartan floating tablets employing a new modified starch optimization by 23 factorial design. IAJPS. 2017;4:793–801. https://doi.org/10.20959/wjpps20173-8836.

    Article  CAS  Google Scholar 

  38. Getyala A, Gangaharappa HV, Prasad MS, Reddy MP, Kumar TM. Formulation and evaluation of non-effervescent floating tablets of losartan potassium. Curr Drug Deliv. 2013;10:620–9.

    Article  CAS  Google Scholar 

  39. Martin A, Bustamante P, Chum AHC. Physical Pharmacy. New Delhi: BI Waverly Pvt Ltd; 1996. p. 423–52.

    Google Scholar 

  40. United State Pharmacopeia (USP) XXVI (2003) US Pharmacopoeial Convention, CD Rom version.

  41. Gupta KR, Wadodkar AR, Wadodkar SG. UV-spectrophotometric methods for estimation of valsartan in bulk and tablet dosage form. Int J ChemTech Res. 2010;2:985–9.

    CAS  Google Scholar 

  42. El-Gibaly I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. Int J Pharm. 2002;249:7–21. https://doi.org/10.1016/S0378-5173(02)00396-4.

    Article  CAS  PubMed  Google Scholar 

  43. Salunke PA, Bakliwal SR, Rane BR, Suryawanshi, Pawar SP. Formulation and evaluation of floating microcarriers of an antidiabetic drug a comparative study of effervescent agent. Int J Pharm Tech. 2010;2:496–512.

    CAS  Google Scholar 

  44. Acharya S, Patra S, Pani NR. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr Polym. 2014;102:360–8. https://doi.org/10.1016/j.carbpol.2013.11.060.

    Article  CAS  PubMed  Google Scholar 

  45. Patel HM, Prajapati BG, Patel AK. Controlled release gastroretentive dosage form of verapamil HCl. Int J PharmTech Res. 2009;1:215–21.

    CAS  Google Scholar 

  46. ulla MR, Saisivam S. Floating matrix tablet of losartan potassium by using hydrophilic swelling polymer and natural gum. Turk J Pharm. 2013;10:435–46.

    CAS  Google Scholar 

  47. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9.

    Article  CAS  Google Scholar 

  48. Peppas NA, Franson NM. The swelling Interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J Polym Sci Polym Phys. 1983;21:983–97. https://doi.org/10.1002/pol.1983.180210614.

    Article  CAS  Google Scholar 

  49. Saisivam S, Rahamath Ulla M, Shakeel F. Development of floating matrix tablets of losartan potassium: in vitro and in vivo evaluation. J Drug Del Sci Tech. 2013;23:611–7. https://doi.org/10.1016/S1773-2247(13)50093-1.

    Article  CAS  Google Scholar 

  50. ICH harmonized tripartite guidelines. Stability testing of new drug substances and products. Q1A (R2). Fed Regist. 2003;68:65717–8.

    Google Scholar 

  51. Srikanth MV, Rao NS, Sunil SA, Ram BJ, Kolapalli VRM. Statistical design and evaluation of a propranolol HCl gastric floating tablet. Acta Pharm Sin B. 2012;2:60–9. https://doi.org/10.1016/j.apsb.2011.12.008.

    Article  CAS  Google Scholar 

  52. Tadros MI. Controlled release efferevescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur J Pharm Biopharm. 2010;74:332–9. https://doi.org/10.1016/j.ejpb.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  53. Motukuri R, Nagesh P, Venisetty RK. Development and evaluation of gastric retentive floating tablets of Nizatidine. IJPRBS. 2014;3:252–76.

    Google Scholar 

  54. Streubel A, Siepmann J, Bodmeier R. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release. Eur J Pharm Sci. 2003;18:37–45. https://doi.org/10.1016/S0928-0987(02)00223-3.

    Article  CAS  PubMed  Google Scholar 

  55. Gangadharappa HV, Rahamath-Ulla M, Pramod-Kumar TM, Shakeel F. Floating drug delivery system of Verapamil hydrochloride using karaya gum and HPMC. Clin Res Regul Aff. 2010;27:13–20. https://doi.org/10.3109/10601331003604762.

    Article  Google Scholar 

  56. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.

    CAS  PubMed  Google Scholar 

  57. Ritger PL, Peppas NAA. Simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6.

    Article  CAS  Google Scholar 

  58. Gangadharappa HV, Biswas S, Getyala A, Gupta V, Kumar TM. Development, in vitro and in vivo evaluation of novel floating hollow microspheres of rosiglitazone maleate. Pharm Lett. 2011;3:299–316.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ranbaxy Labs (Hyderabad, India), Membrana GmbH, (Obernburg, Germany), and Shin Etsu Chemicals Co. (Paris, France) for providing the gift sample of valsartan, Accurel®MP1000, carbopol, lactose, and magnesium stearate, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Rahamathulla.

Ethics declarations

Ethical clearance for the research study that was obtained from the Institutional Animal Ethics Committee of East West College of Pharmacy, Bangalore, Karnataka, India constituted for the purpose.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahamathulla, M., Saisivam, S. & Gangadharappa, H.V. Development of Valsartan Floating Matrix Tablets Using Low Density Polypropylene Foam Powder: In vitro and In vivo Evaluation. AAPS PharmSciTech 20, 35 (2019). https://doi.org/10.1208/s12249-018-1265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-018-1265-z

KEY WORDS

Navigation