Skip to main content
Log in

Enhancement of Valsartan Dissolution Rate by the Increased Porosity of Pellets Using Supercritical CO2: Optimization via Central Composite Design

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this research was to optimize the enhancement the porosity of pellet containing valsartan (VAL) using carbon dioxide at supercritical pressure (scCO2) via central composite design (CCD) to increase the release at simulated gastrointestinal fluids (pH 1.2 and 6.8).

Methods

To prepare the pellet, an extrusion/spheronization apparatus was used. Central composite design was applied to reach the optimum % porosity, dissolution efficiency (DE %) for both different pH. The size, shape, mechanical properties, porosity, specific surface area, pore size, pre-, and post-scCO2 pellets were analyzed for surface shape as well as in vitro drug release behavior was investigated.

Results

The maximum % porosity (42.89%), DE % at pH 1.2 (36.08%), and at pH 6.8 (99.68%) were observed when 50 °C, 200 bar, 72 min, and 27 min were the temperature, pressure, soaking time, and depressurize time, respectively. Pre- and post-scCO2 pellet release rates were much greater at pH 1.2 than the VAL powder form, with around 30 to 50% of the release occurring at 6 h, sequential. At pH 6.8, post-scCO2 pellets release almost 100% of the drug in 30 min, while the VAL powder and pre-scCO2 pellets release approximately 72% and 92% of the drug during 6 h, respectively.

Conclusion

Thus, the dissolving rate of the poorly water-soluble VAL was improved by using a post-scCO2 pellet in pH 1.2 and pH 6.8 environments by an increase in the porosity of the pellet due to the scCO2 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Markham A, Goa KL. Valsartan. Drugs. 1997;54(2):299–311.

    Article  CAS  PubMed  Google Scholar 

  2. Cappello B, Di Maio C, Iervolino M, Miro A. Improvement of solubility and stability of valsartan by hydroxypropyl-\boldbeta-cyclodextrin. J Incl Phenom Macrocycl Chem. 2006;54(3–4):289.

    Article  CAS  Google Scholar 

  3. Li DX, Yan YD, Oh DH, Yang KY, Seo YG, Kim JO, Kim Y-I, Yong CS, Choi H-G. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer. Drug Deliv. 2010;17(5):322–9.

    Article  PubMed  Google Scholar 

  4. Cao Q-R, Liu Y, Xu W-J, Lee B-J, Yang M, Cui J-H. Enhanced oral bioavailability of novel mucoadhesive pellets containing valsartan prepared by a dry powder-coating technique. Int J Pharm. 2012;434(1–2):325–33.

    Article  CAS  PubMed  Google Scholar 

  5. Chopra S, Venkatesan N, Betageri GV. Formulation of lipid bearing pellets as a delivery system for poorly soluble drugs. Int J Pharm. 2013;446(1–2):136–44.

    Article  CAS  PubMed  Google Scholar 

  6. Nejati L, Kalantari F, Bavarsad N, Saremnejad F, Moghaddam PT, Akhgari A. Investigation of using pectin and chitosan as natural excipients in pellet formulation. Int J Biol Macromol. 2018;120:1208–15.

    Article  CAS  PubMed  Google Scholar 

  7. Beringhs AO, Souza FM, de Campos AM, Ferraz HG, Sonaglio D. Technological development of Cecropia glaziovi extract pellets by extrusion-spheronization. Rev Bras. 2013;23(1):160–8.

    CAS  Google Scholar 

  8. Vergote G, Vervaet C, Van Driessche I, Hoste S, De Smedt S, Demeester J, Jain R, Ruddy S, Remon JP. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;219(1–2):81–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sardou HS, Akhgari A, Mohammadpour AH, Kamali H, Jafarian AH, Garekani HA, Sadeghi F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int J Pharm. 2021;597:120347.

  10. Chopra R, Alderborn G, Podczeck F, Newton JM. The influence of pellet shape and surface properties on the drug release from uncoated and coated pellets. Int J Pharm. 2002;239(1–2):171–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kamali H, Atamanesh M, Kaffash E, Mohammadpour F, Khodaverdi E, Hadizadeh F. Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. J Drug Delivery Sci Technol. 2020;57.

  12. Dhanda DS, Tyagi P, Mirvish SS, Kompella UB. Supercritical fluid technology based large porous celecoxib–PLGA microparticles do not induce pulmonary fibrosis and sustain drug delivery and efficacy for several weeks following a single dose. J Control Release. 2013;168(3):239–50.

    Article  CAS  PubMed  Google Scholar 

  13. Obaidat RM, Tashtoush BM, Bayan MF, Al Bustami RT, Alnaief M. Drying using supercritical fluid technology as a potential method for preparation of chitosan aerogel microparticles. AAPS PharmSciTech. 2015;16(6):1235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin XF, Kankala RK, Tang N, Xu PY, Hao LZ, Yang DY, Wang SB, Zhang YS, Chen AZ. Supercritical fluid-assisted porous microspheres for efficient delivery of insulin and inhalation therapy of diabetes. Adv Healthcare Mater. 2019;8(12):1800910.

    Article  Google Scholar 

  15. Kankala RK, Lin X-F, Song H-F, Wang S-B, Yang D-Y, Zhang YS, Chen A-Z. Supercritical fluid-assisted decoration of nanoparticles on porous microcontainers for codelivery of therapeutics and inhalation therapy of diabetes. ACS Biomater Sci Eng. 2018;4(12):4225–35.

    Article  CAS  PubMed  Google Scholar 

  16. Salerno A, Saurina J, Domingo C. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. Int J Pharm. 2015;496(2):654–63.

    Article  CAS  PubMed  Google Scholar 

  17. De Matos M, Piedade A, Alvarez-Lorenzo C, Concheiro A, Braga M, De Sousa H. Dexamethasone-loaded poly (ɛ-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm. 2013;456(2):269–81.

    Article  PubMed  Google Scholar 

  18. Diaz-Gomez L, García-González CA, Wang J, Yang F, Aznar-Cervantes S, Cenis JL, Reyes R, Delgado A, Évora C, Concheiro A. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int J Pharm. 2017;527(1–2):115–25.

    Article  CAS  PubMed  Google Scholar 

  19. Chen C-X, Liu Q-Q, Xin X, Guan Y-X, Yao S-J. Pore formation of poly (ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J Supercrit Fluids. 2016;117:279–88.

    Article  CAS  Google Scholar 

  20. Khodaverdi E, Abbaspour MR, Oroojalian F, Omidkhah N, Hossein-nezahd S, Kamali H, Hadizadeh F. Dexamethasone delivery of porous PEG-PCL-PEG scaffolds with supercritical carbon dioxide gas foaming. J Drug Delivery Sci Technol. 2021;102547.

  21. Lian Z, Epstein SA, Blenk CW, Shine AD. Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. J Supercrit Fluids. 2006;39(1):107–17.

    Article  CAS  Google Scholar 

  22. Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation. Polym Eng Sci. 1994;34(14):1137–47.

  23. Ahmadzadeh Sani T, Golmakani E, Mohammadi A, Feyzi P, Kamali H. Optimization of pressurized hot water extraction on the extract yield and antioxidant activity from Biebersteinia multifida DC using a modified supercritical fluid extractor. J Supercrit Fluids. 2014;94:130–7.

    Article  CAS  Google Scholar 

  24. Yazdanbakhsh AR, Daraei H, Rafiee M, Kamali H. Performance of iron nano particles and bimetallic Ni/Fe nanoparticles in removal of amoxicillin trihydrate from synthetic wastewater. Water Sci Technol. 2016;73(12):2998–3007.

    Article  CAS  PubMed  Google Scholar 

  25. Kamali H, Ghaziaskar HS, Khakshour A, Kaboudvand M. Supercritical CO2 extraction of phthalic anhydride, benzoic acid and maleic acid from petrochemical wastes. J Supercrit Fluids. 2013;74:46–51.

    Article  CAS  Google Scholar 

  26. Kamali H, Khodaverdi E, Hadizadeh F, Yazdian-Robati R, Haghbin A, Zohuri G. An in-situ forming implant formulation of naltrexone with minimum initial burst release using mixture of PLGA copolymers and ethyl heptanoate as an additive: In-vitro, ex-vivo, and in-vivo release evaluation. J Drug Delivery Sci Technol. 2018;47:95–105.

    Article  CAS  Google Scholar 

  27. Kueasook R, Rattanachueskul N, Chanlek N, Dechtrirat D, Watcharin W, Amornpitoksuk P, Chuenchom L. Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: influence of mesoporosity on efficiency of dye adsorption. Microporous Mesoporous Mater. 2020;296:110005.

  28. Goimil L, Santos-Rosales V, Delgado A, Evora C, Reyes R, Lozano-Perez AA, Aznar-Cervantes SD, Cenis JL, Gómez-Amoza JL, Concheiro A. scCO2-foamed silk fibroin aerogel/poly (ε-caprolactone) scaffolds containing dexamethasone for bone regeneration. J CO2 Util. 2019;31:51–64.

  29. Young CR, Dietzsch C, McGinity JW. Compression of controlled-release pellets produced by a hot-melt extrusion and spheronization process. Pharm Dev Technol. 2005;10(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm. 2017;113:60–74.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf, B. 2011;86(1):206–11.

    Article  CAS  Google Scholar 

  32. Fouad EA, El-Badry M, Mahrous GM, Alanazi FK, Neau SH, Alsarra IA. The use of spray-drying to enhance celecoxib solubility. Drug Dev Ind Pharm. 2011;37(12):1463–72.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Kim MJ, Yoon H, Shim CR, Ko HA, Cho SA, Lee D, Khang G. Enhanced dissolution rate of celecoxib using PVP and/or HPMC-based solid dispersions prepared by spray drying method. J Pharm Investig. 2013;43(3):205–13.

    Article  CAS  Google Scholar 

  34. Costa F, Sousa J, Pais A, Formosinho S. Comparison of dissolution profiles of Ibuprofen pellets. J Control Release. 2003;89(2):199–212.

    Article  CAS  PubMed  Google Scholar 

  35. Golmakani E, Mohammadi A, Sani TA, Kamali H. Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. f. J Supercrit Fluids. 2014;95:318–24.

  36. Reverchon E, Cardea S. Production of controlled polymeric foams by supercritical CO2. J Supercrit Fluids. 2007;40(1):144–52.

    Article  CAS  Google Scholar 

  37. Liu G, Gong L, Zhang J, Wu Z, Deng H, Deng S. Development of nimesulide amorphous solid dispersions via supercritical anti-solvent process for dissolution enhancement. Eur J Pharm Sci. 2020;152:105457.

  38. Kelly CA, Howdle SM, Shakesheff KM, Jenkins MJ, Leeke GA. Viscosity studies of poly (DL-lactic acid) in supercritical CO2. J Polym Sci, Part B: Polym Phys. 2012;50(19):1383–93.

    Article  CAS  Google Scholar 

  39. Mohammadi M, Shadizadeh SR, Manshad AK, Mohammadi AH. Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks. J Pet Explor Prod Technol. 2020;10(5):1817–34.

    Article  CAS  Google Scholar 

  40. Kaffash E, Badiee A, Akhgari A, Rezayat NA, Abbaspour M, Saremnejad F. Development and characterization of a multiparticulate drug delivery system containing indomethacin-phospholipid complex to improve dissolution rate. J Drug Delivery Sci Technol. 2019;53:101177.

  41. Chopra R, Podczeck F, Newton JM, Alderborn G. The influence of pellet shape and film coating on the filling of pellets into hard shell capsules. Eur J Pharm Biopharm. 2002;53(3):327–33.

    Article  CAS  PubMed  Google Scholar 

  42. Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L. Metal foams: a design guide. Elsevier; 2000.

  43. Ramakrishnan N, Arunachalam V. Effective elastic moduli of porous solids. J Mater Sci. 1990;25(9):3930–7.

    Article  Google Scholar 

  44. Carr J, Milhet X, Gadaud P, Boyer SA, Thompson GE, Lee P. Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints. J Mater Process Technol. 2015;225:19–23.

    Article  CAS  Google Scholar 

  45. Skotnicki M, Gaweł A, Cebe P, Pyda M. Thermal behavior and phase identification of Valsartan by standard and temperature-modulated differential scanning calorimetry. Drug Dev Ind Pharm. 2013;39(10):1508–14.

    Article  CAS  PubMed  Google Scholar 

  46. Wu L, Miao X, Shan Z, Huang Y, Li L, Pan X, Yao Q, Li G, Wu C. Studies on the spray dried lactose as carrier for dry powder inhalation. Asian J Pharm Sci. 2014;9(6):336–41.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Vice Chancellor for Research and Technology of Mashhad University of Medical Sciences, Mashhad, Iran (project code: N-981315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kamali.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhgari, A., Nosrati, F., Rahmanian-Devin, P. et al. Enhancement of Valsartan Dissolution Rate by the Increased Porosity of Pellets Using Supercritical CO2: Optimization via Central Composite Design. J Pharm Innov 18, 861–873 (2023). https://doi.org/10.1007/s12247-022-09685-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09685-3

Keywords

Navigation