Skip to main content
Log in

Effect of different polymeric dispersions on In-vitro dissolution rate and stability of celecoxib class II drug

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Solid dispersions can play a significant role in the enhancement of drug dissolution and stability. Still, the polymeric effect can vary according to the possibility of intermolecular forces with the drug. The objective of this study was to evaluate the effect of several polymers on enhancement in-vitro dissolution behavior of celecoxib; in addition to comparing prepared dispersions with selected commercial products. Solid dispersions of celecoxib were prepared with different ratios between the drug and selected polymer (Soluplus®, polyvinyl pyrrolidine, Chitosan, polyethylene glycol). Physicochemical characterizations were performed using Powder X-ray diffraction, Differential Scanning Calorimetry, Fourier Transform Infra-Red analysis and Scanning Electron Microscopy. Dispersions were subjected to in-vitro drug release studies. Results revealed enhancement in dissolution rate for all dispersions prepared except for Chitosan-based dispersions that showed clear retardation in the drug release. Prepared dispersions from other polymers succeeded to match with release profile of two commercially marketed products (Celebrex® and Flamex®). Further Characterization of Chitosan dispersions revealed presence celecoxib in its crystalline form entrapped inside Chitosan carrier with the presence of two hydrogen bonding between Chitosan and celecoxib. Although both Polyvinylpyrrolidone, and polyethylene glycol dispersions showed a great enhancement in drug release; both failed to maintain stability. Sticky paste formation occurred to dispersions, and recrystallization took place in polyethylene glycol dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajesh K, Rajalakshmi R, Umamaheswari J, Ashok Kumar CK (2011) Liquisolid technique a novel approach to enhance solubility and bioavailability. International Journal of Biopharmaceutics 2(1):8–13

    Google Scholar 

  2. Ventura CA, Giannone I, Paolino D, Pistara V, Corsaro A, Puglisi G (2005) Preparation of celecoxib-dimethyl-beta-cyclodextrin inclusion complex: characterization and in vitro permeation study. Eur J Med Chem 40(7):624–631

    Article  CAS  Google Scholar 

  3. Chow HHS, Anavy N, Salazar D, Frank DH, Alberts DS (2004) Determination of celecoxib in human plasma using solid-phase extraction and high-performance liquid chromatography. J Pharm Biomed Anal 34(1):167–174

    Article  CAS  Google Scholar 

  4. Dolenc A, Kristl J, Baumgartner S, Planinsek O (2009) Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm 376(1–2):204–212

    Article  CAS  Google Scholar 

  5. Subramanian N, Ray S, Ghosal SK, Bhadra R, Moulik SP (2004) Formulation Design of Self-Microemulsifying Drug Delivery Systems for improved oral bioavailability of celecoxib. Biol Pharm Bull 27(12):1993–1999

    Article  CAS  Google Scholar 

  6. Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. International Scholarly Research Network Pharmaceutics 2012:1–10

    Google Scholar 

  7. Chokshi RJ, Zia H, Sandhu HK, Shah NH, Malick WA (2007) Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons. Drug Deliv 14(1):33–45

    Article  CAS  Google Scholar 

  8. Sekiguchi K, Obi N, Ueda Y (1964) Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull (Tokyo) 12:134–144

    Article  CAS  Google Scholar 

  9. Arunachalam A, Karthikeyan M, Konam K, Prasad P, Sethuraman S, Ashutoshkumar S (2010) Solid dispersions: A review. Current Pharmaceutical Research 1(1):82–90

    Google Scholar 

  10. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    Article  CAS  Google Scholar 

  11. Kumar BP, Rao S, Murthy KVR, Sahu RK, Ramu B (2011) Solid dispersion technique: a tool for enhancing bioavailability of poorly soluble drugs. Journal of Chemical and Pharmaceutical sciences 4(4):170–179

    Google Scholar 

  12. Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12(23–24):1068–1075

    Article  CAS  Google Scholar 

  13. Obaidat RM, Tashtoush BM, Awad AA, Al Bustami RT (2016) Using supercritical fluid technology (SFT) in preparation of tacrolimus solid dispersions. AAPS PharmSciTech

  14. Vo CL, Park C, Lee BJ (2013) Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 85(3 Pt B):799–813

    Article  CAS  Google Scholar 

  15. group B (2010). Soluplus Technical Information, pp 1–8

  16. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K (2013) Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84(1):228–237

    Article  CAS  Google Scholar 

  17. Thakral NK, Ray AR, Bar-Shalom D, Eriksson AH, Majumdar DK (2012) Soluplus--solubilized citrated camptothecin--a potential drug delivery strategy in colon cancer. American Association of Pharmaceutical Scientists 13(1):59–66

    CAS  Google Scholar 

  18. Fischer F, Bauer S (2009) An all rounder in the chemistry polyvinylpyrrolidone. Chem unserer Zeit 43:376–383

    Article  CAS  Google Scholar 

  19. Folttmann H, Quadir A (2008) Polyvinylpyrrolidone (PVP) – one of the most widely used excipients in pharmaceuticals: an overview. Drug Delivery Technology 8:7–22

    Google Scholar 

  20. Shah J, Vasanti S, Anroop B, Vyas H (2008) Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem 63(1–2):69–75

    Google Scholar 

  21. Singh A, Sharma PK, Meher JG, Malviya R (2011) Evaluation of enhancement of solubility of paracetamol by solid dispersion technique using different polymers concentration. Asian Journal of Pharmaceutical and Clinical Research 4(1):117–119

    CAS  Google Scholar 

  22. Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry 2011:1–29

    Article  Google Scholar 

  23. de Alvarenga ES (2011) Characterization and properties of chitosan. In: Biotechnology of biopolymers, pp 91–108

  24. Rodrigues S, Dionisio M, Lopez CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. Journal of Functional Biomaterials 3(3):615–641

    Article  CAS  Google Scholar 

  25. Caliceti P (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev 55(10):1261–1277

    Article  CAS  Google Scholar 

  26. Kumar SGV, Mishra DM (2006) Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000. The Pharmaceutical Society of Japan 126(8):567–664

    Google Scholar 

  27. Obaidat R, Al-Jbour N, Al-Sou’d K, Sweidan K, Al-Remawi M, Badwan A (2010) (2010). Some Physico-chemical properties of low molecular weight Chitosans and their relationship to conformation in aqueous solution. J Solut Chem 39(4):575–588

    Article  CAS  Google Scholar 

  28. Obaidat RM, Tashtoush BM, Bayan MF, Al Bustami RT, Mohammad A (2015) Drying using supercritical fluid technology as a potential method for preparation of chitosan aerogel microparticles. American Association of Pharmaceutical Scientists. 16(6):1235–1244

    CAS  Google Scholar 

  29. Primo FT, Froehlich PE (2005) Celecoxib identification methods. Acta Farm Bonaer 24(3):421–425

    CAS  Google Scholar 

  30. Schott H, Kwan LC, Feldman S (1982) The role of surfactants in the release of very slightly soluble drugs from tablets. J Pharm Sci 71(9):1038–1045

    Article  CAS  Google Scholar 

  31. Chawdary KPR, Srinivas SV (2006) Influence of hydrophilic polymers on CelecoxibComplexation with Hydroxypropyl β-cyclodextrin. American Association of Pharmaceutical Scientists. 7(3):E1–E6

    Google Scholar 

  32. Nasr M (2010) In vitro and in vivo evaluation of proniosomes containing celecoxib for oral administration. American Association of Pharmaceutical Scientists 11(1):85–89

    CAS  Google Scholar 

  33. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19(2):119–124

    CAS  Google Scholar 

  34. Parize AL, Stulzer HK (2012) Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray dryin. Quim Nov. 35(6):1127–1132

  35. Jadhav K, Gowekar N, Gowekar S (2012) A validated RP-HPLC method for the determination of celecoxib in bulk and pharmaceutical dosage form. Int J Res Pharmaceut Biomed Sci 3(3):1312–1316

    CAS  Google Scholar 

  36. Lee JH, Kim MJ, Yoon H, Shim CR, Ko HA, Cho SA, et al (2013) Enhanced dissolution rate of celecoxib using PVP and/or HPMC-based solid dispersions prepared by spray drying method. Journal of Pharmaceutical Investigation 43(3):205–213

    Article  CAS  Google Scholar 

  37. Caron V, Hu Y, Tajber L, Erxleben A, Corrigan OI, McArdle P, et al (2013) Amorphous solid dispersions of sulfonamide/Soluplus(R) and sulfonamide/PVP prepared by ball milling. American Association of Pharmaceutical Scientists 14(1):464–474

    CAS  Google Scholar 

  38. Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK (2003) Characterization of solid-state forms of celecoxib. Eur J Pharm Sci 20(3):305–317

    Article  CAS  Google Scholar 

  39. Gupta VR, Mutalik S, Patel MM, Jani GK (2007) Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharma 57:173–184

    Article  CAS  Google Scholar 

  40. Shamma RN, Basha M (2013) Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol 237:406–414

    Article  CAS  Google Scholar 

  41. Sethia S, Squillante E (2004) Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 272(1–2):1–10

    Article  CAS  Google Scholar 

  42. Ujang Z, Diah M, Abdul Rashid AH, Halim AS (2011) The development, characterization and application of water soluble chitosan. Biotechnol Biopolymers 109–31

  43. El-Badry M, Fetih G, Fathy M (2009) Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharmaceutical Journal 17(3):217–225

    Article  Google Scholar 

  44. Patil M, Gaikwad N (2011) Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution. Brazilian Journal of Pharmaceutical Sciences 47:161–166

    Article  CAS  Google Scholar 

  45. Homayouni A, Sadeghi F, Nokhodchi A, Varshosaz J, Garekani HA, Vyas H (2014) Preparation and characterization of celecoxib solid dispersions; comparison of poloxamer-188 and PVP-K30 as carriers. Iranian Journal of Basic Medical Sciences 17:322–331

    Google Scholar 

  46. Homayouni A, Sadeghi F, Nokhodchi A, Varshosaz J, Garekani HF (2015) Preparation and characterization of celecoxib dispersions in Soluplus®: comparison of spray drying and conventional methods. Iranian Journal of Pharmaceutical Research 14(1):35–50

  47. Zhang X, Sun N, Wu B, Lu Y, Guan T, Wu W (2008) Physical characterization of lansoprazole/PVP solid dispersion prepared by fluid-bed coating technique. Powder Technol 182(3):480–485

    Article  CAS  Google Scholar 

  48. Guleria R, Kaith NS, Singh R (2012) PEG based solid dispersions of gliclazide a comparative study. Int J Pharm Pharm Sci 4(1):507–511

    CAS  Google Scholar 

  49. Sambhakar S, Singh B, Madan K, Singh M, Kashyap N, Mayle S (2013) Solid dispersions: a tool for improving the solubility and dissolution of metronidazole. International Journal of Drug Delivery 5:94–98

    CAS  Google Scholar 

  50. Hu L, Gu D, Hu Q, Shi Y, Gao N (2014) Investigation of solid dispersion of atorvastatin calcium in polyethylene glycol 6000 and polyvinylpyrrolidone. Trop J Pharm Res 13(6):835

    Article  Google Scholar 

  51. Liu C, Desai KG, Liu C (2005) Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000. Drug Dev Ind Pharm 31(1):1–10

    Article  Google Scholar 

  52. Fouad EA, El-Badry M, Mahrous GM, Alanazi FK, Neau SH, Alsarra IA (2011) The use of spray-drying to enhance celecoxib solubility. Drug Dev Ind Pharm 37(12):1463–1472

    Article  CAS  Google Scholar 

  53. Naelapää K, Boetker J, Müllertz A, Rades T, Rantanen J, Bar-Shalom D. Soluplus® for modifying the release of highly water soluble APIs

  54. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S (1996) Properties of solid dispersions of piroxicam in polyvinylpyrrolidone K-30. Int J Pharm 143:59–66

    Article  CAS  Google Scholar 

  55. Verheyen S, Blaton N, Kinget R, Van den Mooter G (2002) Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions. Int J Pharm 249:45–58

    Article  CAS  Google Scholar 

  56. Dangprasirt P, Ritthidej G (1995) Development of diclofenac sodium controlled release solid dispersions by spray drying using optimization strategy I. Powder formulation. Drug Dev Ind Pharm 21(20):2323–2337

    Article  CAS  Google Scholar 

  57. Soliman M, Abdel Malak NS, El Gazayerly ON, Abdel Rehim AA (2011) Preparation of celecoxib solid dispersions for dermal application: in vitro characterization and skin irritation test. J Drug Del Sci Tech 21(6):509–516

    Article  CAS  Google Scholar 

  58. Kim EJ, Chun MK, Jang JS, Lee IH, Lee KR, Choi HK (2006) Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm 64(2):200–205

    Article  CAS  Google Scholar 

  59. Sekikawa H, Fujiwara JE, Naganuma T, Nakano M, Arita T (1987) Inhibitory effect of polyvinylpyrrolidone on the crystallization of drugs. Chem Pharm Bull (Tokyo) 26:118–126

    Article  Google Scholar 

  60. Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  CAS  Google Scholar 

  61. Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231:131–144

    Article  CAS  Google Scholar 

  62. Katharya AK, Chaudhary R, Sharma R, Singh Y, Teotia UVS (2013) Development and optimization of solid dispersion of olanzapine in poly ethylene glycol by D-optimal response surface factorial design. International Journal of PharmTech Research 5(2):700–710

    Google Scholar 

  63. Narang AS, Srivastava AK (2002) Evaluation of solid dispersions of Clofazimine. Drug Dev Ind Pharm 28(8):1001–1013

    Article  CAS  Google Scholar 

  64. Ullah M, Ullah H, Murtaza G, Mahmood Q, Hussain I (2015) Evaluation of influence of various polymers on dissolution and phase behavior of carbamazepine-succinic acid Cocrystal in matrix tablets. Biomed Res Int 2015:1–10

    Article  Google Scholar 

  65. Abd Alaziz DM, Sammour OA, Elshamy AEAA, Neseem DI (2014) Formulation and evaluation of binary and ternary solid dispersions of domperidone by solvent evaporation method. Afr J Pharm Pharmacol 8(3):66–80

    Article  Google Scholar 

  66. Parmar KR, Shah SR, Sheth NR (2011) Studies in dissolution enhancement of Ezetimibe by solid dispersions in combination with a surface adsorbent. Dissolution Technologies 18(3):55–61

    Article  CAS  Google Scholar 

  67. Afifia S (2015) Solid dispersion approach improving dissolution rate of Stiripentol: a novel antiepileptic drug. Iranian Journal of Pharmaceutical Research 14(4):1001–1014

    Google Scholar 

  68. Ahuja N, Katare OP, Singh B (2007) Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 65(1):26–38

    Article  CAS  Google Scholar 

  69. Murtaza G, Ahmad M, Khan S, Hussain I (2012) Evaluation of Cefixime-loaded chitosan microspheres: analysis of dissolution data using DDSolver. Dissolution Technologies 19(2):13–19

    Article  CAS  Google Scholar 

  70. Raghavendra Rao NG, Kulkarni U, Deshmukh A, Suresh DK (2010) Preparation and characterization of Ionotropic cross-linked chitosan microparticles for controlled release of Aceclofenac. International Journal of Pharmaceutical Sciences and Drug Research 2(2):107–111

    Google Scholar 

Download references

Acknowledgements

This work is funded by Deanship of Research at Jordan University Science and Technology (JUST) with Fund number (302/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana M. Obaidat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidat, R.M., AlTaani, B. & Ailabouni, A. Effect of different polymeric dispersions on In-vitro dissolution rate and stability of celecoxib class II drug. J Polym Res 24, 58 (2017). https://doi.org/10.1007/s10965-017-1215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1215-6

Keywords

Navigation