Skip to main content
Log in

Preparation and mechanical properties of acryl/glass cloth composite materials with low light dispersion

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare transparent acryl/glass cloth composite materials with low light dispersion and high mechanical properties (modulus and strength) by using E-glass cloth and photo-curable acrylate monomers. The influences of the refractive index of the matrix, and the addition of comonomers and silica nanoparticles treated with silane coupling agent on the transparency, wavelength dependence of transmittance, and tensile properties of the composite materials were investigated. The acryl/glass cloth composite material prepared with E-glass cloth and 2,2-bis[4-(acryloxy diethoxy) phenyl] propane (ABPE4) indicated high transmittance at 600 nm, while the transmittance at 400 nm was reduced due to the scattering at the interface of the matrix and the glass fibers because the refractive index difference was large at shorter wavelengths. The usage of a comonomer with a lower refractive index than ABPE4 was an effective way to decrease the refractive index mismatch between the matrix and the glass fibers, and the transparency of the resulting composite material was improved. Moreover, the mechanical performance of the acryl/glass cloth composite material was increased by adding comonomer with a high affinity for glass cloth to matrix. The addition of silica nano particles treated with a silane coupling agent to the matrix was also a useful method for not only improving the transparency, but also improving the mechanical performance, because the nano particles on the fiber surface reduced the refractive index difference and increased the surface area and bonding strength at the interface of the matrix and the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khanna SK, Ellingsen MD, Winter RM (2004) Investigation of fracture in transparent glass fiber reiforced polymer composites using photoelasticity. J Eng Mater Technol 126:1

    Article  CAS  Google Scholar 

  2. Jin JH, Ko JH, Yang SC, Bae BS (2010) Rollable transparent glass-fabric reinforced composite substrate for flexible devices. Adv Mater 22:4510–4515

    Article  CAS  Google Scholar 

  3. Duan Y, Wang Y, Tang Y, Li D, Lu B (2011) Fabrication and mechanical properties of UV-curable glass fiber-reinforced polymer—matrix composite. J Compos Mater 45:565–572

    Article  CAS  Google Scholar 

  4. Lien WF, Liaw WC, Huang PC, Chang HL, Tsai HS (2011) Preparation of glass fiber clothes reinforced polytetrafluoroethylene film composites using plasma for polytetrafluoroethylene surface modification. J Polym Res 18:773–780

    Article  CAS  Google Scholar 

  5. Kang ES, Jung KH, Park DH, Kang N, Ryu B (2012) Thermo-optic characteristics in transparent glass fabric reinforced composite using inorganic-organic hybrid materials. J Sol-Gel Sci Technol 62:333–337

    Article  CAS  Google Scholar 

  6. Xian G, Li H, Su X (2012) Water absorption and hygrothermal ageing of ultraviolet cured glass-fiber reinforced acrylate composites. Polym Compos 33:1120–1128

    Article  CAS  Google Scholar 

  7. Xian G, Li H, Su X (2012) Effects of immersion and sustained bending on water absorption and thermomechanical properties of ultraviolet cured glass fiber-reinforced acrylate polymer composites. J Compos Mater 47:2275–2285

    Article  Google Scholar 

  8. Malpot A, Touachard F, Bergamo S (2015) Fatigue behaviour of open-hole samples and automotive mini-structures made of woven glass-fiber-reinforced polyamide 6,6. Polym Test 48:160–168

    Article  CAS  Google Scholar 

  9. Zhu H, Khanna SK (2016) A novel transparent glass fiber-reinforced polymer composite interlayer for blast-resistant windows. J Eng Mater Technol 138:031007

    Article  Google Scholar 

  10. Seo Y, Cho S, Kim S, Choi S, Kim H (2017) Synthesis of refractive index tunale silazane networks for transparent glass fiber reiforced composite. Ceram Int 43:7895–7900

    Article  CAS  Google Scholar 

  11. Yang X, Li K, Xu M, Jia K, Liu X (2017) Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers for high performance composite laminates. J Polym Res 24:195

    Article  Google Scholar 

  12. Iba H, Chang T, Kagawa Y (2002) Optically transparent continuous glass fiber-reinforced epoxy matrix composite: fabrication, optical and mechanical properties. Compos Sci Technol 62:2043–2052

    Article  CAS  Google Scholar 

  13. Chen Y, Li X, Zhan M (2011) Synthesis of poly(1,4-cyclohexanedimethyl-1,4-cyclohexanedicarboxylate) as the matrix resin for transparent composites. Polym Polym Compos 19:123–130

    CAS  Google Scholar 

  14. Park SM, Oh CY, Jo NJ (2016) Fabrication and properties of glass cloth reinforced multifunctional acrylic polymer substrate. Polym Bull 73:2485–2492

    Article  CAS  Google Scholar 

  15. Matsukawa K, Watase S, Fukuda T, Goda H (2010) Preparation of photo-curable thiol-ene hybrids and their application for optical materials. J Photopolym Sci Technol 23:115–119

    Article  CAS  Google Scholar 

  16. Okazaki M, Fukukawa K, Sakata Y, Urakami T, Yamashita W, Tamai S (2011) New transparent composite films based on glass cloth reinforced polyimides. J Photopolym Sci Technol 24:251–254

    Article  CAS  Google Scholar 

  17. Krug III DJ, Asuncion MZ, Popova V, Laine RM (2013) Transparent fiber glass reinforced composites. Comps Sci Technol 77:95–100

    Article  CAS  Google Scholar 

  18. Menta VGK, Vuppalapati RR, Chandrashekhara K, Schuman T (2014) Manufacturing of transparent composites using vacuum infusion process. Polym Polym Compos 22:843–849

    CAS  Google Scholar 

  19. Asuncion MZ, Krug III DJ, Abu-Seir HW, Laine RM (2015) Facile thiol-ene reactions of vinyl T10/T12 silsesquioxanes for contrlled refractive indices for transparent fiber glass reinforced composites. J Ceram Soc Jpn 123:725–731

    Article  CAS  Google Scholar 

  20. Elly-Bristow DM, Bellinger MA, Sauer JA, Hara M (1999) Interfacial bonding of silica glass fiber to polystyrene ionomers. J Polym Sci B Polym Phys 37:2705–2710

    Article  Google Scholar 

  21. Mäder E, Pisanova E (2000) Characterization and design of interphases in glass fiber reinforced polypropylene. Polym Compos 21:361–368

    Article  Google Scholar 

  22. Park SJ, Jin JS (2001) Effect of silane coupling agent on interface and performance of glass fibers/un-saturated polymer composites. J Collid Interface Sci 242:174–179

    Article  CAS  Google Scholar 

  23. Sever K, Sarikanat M, Seki Y, Tavman IH (2009) Concentration effect of γ-glycidoxypropyl-trimethoxysilane on the mechanical properties of glass fiber-epoxy composite. Polym Compos 30:1251–1257

    Article  CAS  Google Scholar 

  24. Duan Y, Wang Y, Tang Y, Li D, Lu B (2010) Fabrication and mechanical properties of uv-curable glass fiber reinforced polymer-matrix composite. J Compos Mater 45:565–572

    Article  Google Scholar 

  25. Kim HH, Kim SY, Kim DH, Oh CY, Jo NJ et al (2014). J Mater Sci Chem Eng 2:38–42

    CAS  Google Scholar 

  26. Pang SS, Li G, Jerro HD, Peck JA (2004) Fast joining of composite pipes using uv curing frp composite. Polym Compos 25:298–306

    Article  CAS  Google Scholar 

  27. Endruweit A, Ruijter W, Johnson MS, Long AC (2008) Transmission of ultraviolet light through reinforcement fabrics and its effect on ultraviolet curing of composite laminates. Polym Compos 29:818–829

    Article  CAS  Google Scholar 

  28. Daimatsu K, Sugimoto H, Nakanishi E, Yasumura T, Inomata K (2008) Preparation and physical properties of transparent organic-inorganic nanohybrid materials based on urethane dimethacrylate. J Appl Polym Sci 109:1611–1617

    Article  CAS  Google Scholar 

  29. Bhadaja DJ, Sheth PC (2015) An experiment on the mechanical performance of glass fiber reinforced polymer at different environmental temperature. International Journal for Scientific Research & Development 3:1805–1807

    CAS  Google Scholar 

  30. Wu J, Zhang R, Ma G, Hou C, Zhang H (2017) Preparation of fluorinated oligomer with tertiary amine structure in the uv curable coatings. J Appl Polym Sci 134:44387

    Google Scholar 

  31. Hu Y, Shang Q, Bo C, Jia P, Feng G, Zhang F, Liu C, Zhou Y (2019) Synthesis and properties of uv-curable polyfunctional polyurethane acrylate resins from cardanol. ACS Omega 4:12505–12511

    Article  CAS  Google Scholar 

  32. Li C, Chen J, Yang F, Chang W, Nie J (2013) Preparation and characterization of uv-cured hybrid coatings by trieyhoxysilane-modified dimethacrylate based on bisphenol-s epoxy. J Appl Polym Sci 129:2189–2195

    Article  CAS  Google Scholar 

  33. Detomi AC, Santos RM, Filho SLMR, Martuscelli CC, Panzera TH, Scarpa F (2014) Statistical effects of using ceramic particles in glass fiber reinforced composites. Mater Des 55:463–470

    Article  CAS  Google Scholar 

  34. Torres RB, Santos JC, Panzera TH, Christoforo AL, Borges PHR, Scarpa F (2017) Hybrid glass fiber reiforced composites containing silica and cement micoparticles based on a design of experiment. Polym Test 57:87–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sugimoto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, H., Tonouchi, S., Toda, K. et al. Preparation and mechanical properties of acryl/glass cloth composite materials with low light dispersion. J Polym Res 27, 39 (2020). https://doi.org/10.1007/s10965-019-1998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1998-8

Keywords

Navigation