Skip to main content
Log in

Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bacterial cellulose nanocrystal (BCNC) was prepared from bacterial cellulose (BC) using acid hydrolysis for 12, 24 and 72 h. The effect of the BCNC was estimated as a means of reinforcing the poly(vinyl alcohol) (PVA) matrix in terms of mechanical and thermal properties. The effect of the hydrolysis time on BCNC extraction was evaluated by considering morphology, changes in chemical functional groups, crystallinity and thermal stability. Atomic force microscopy (AFM) images revealed the diameters of spherical cellulosic particles were in the range 16–35 nm with the smaller ones resulting from a longer hydrolysis treatment time. Fourier transform infrared (FTIR) spectroscopy showed no changes in the functional groups between BC and BCNC samples for all hydrolysis extraction times. However, X-ray diffraction (XRD) proved that the crystallinity of the BCNC increased up to 87% in comparison with the BC. The thermal stability of nanocellulose decreased over a longer hydrolysis period. Furthermore, the BCNC showed an improved effect on the PVA matrix in both tensile and thermal analysis. Therefore, BCNC obtained by acid hydrolysis for 24 h could be used as a reinforcing agent for material industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  2. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  3. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85(1):245–250. doi:10.1016/j.carbpol.2011.02.022

    Article  CAS  Google Scholar 

  4. Horn SJ, Nguyen QD, Westereng B, Nilsen PJ, Eijsink VGH (2011) Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenergy 35(12):4879–4886. doi:10.1016/j.biombioe.2011.10.013

    Article  CAS  Google Scholar 

  5. Teixeira EM, Corrêa AC, Manzoli A, Fabio dLL, Cauê Ribeiro dO, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606. doi:10.1007/s10570-010-9403-0

    Article  CAS  Google Scholar 

  6. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576. doi:10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  7. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem, Int Ed Engl 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  8. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145. doi:10.1007/bf01139032

    Article  CAS  Google Scholar 

  9. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature's arts. J Mater Sci 35(2):261–270. doi:10.1023/A:1004775229149

    Article  CAS  Google Scholar 

  10. Wan Y, Hong L, Jia S, Huang Y, Zhu Y, Wang Y, Jiang H (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832. doi:10.1016/j.compscitech.2005.11.027

    Article  CAS  Google Scholar 

  11. Ha EYW, Landi CD (1998) Steam explosion treatment of cellulose source, extraction to remove hemicellulose and lignin. US5769934 A

  12. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64(15):2407–2413. doi:10.1016/j.compscitech.2004.05.001

    Article  CAS  Google Scholar 

  13. Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res, Part B 79B(2):245–253. doi:10.1002/jbm.b.30535

    Article  CAS  Google Scholar 

  14. Park W-I, Kang M, Kim H-S, Jin H-J (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249-250(1):289–294. doi:10.1002/masy.200750347

    Article  Google Scholar 

  15. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431. doi:10.1016/j.biomaterials.2004.02.049

    Article  CAS  Google Scholar 

  16. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  17. Ranby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650

    Article  CAS  Google Scholar 

  18. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  19. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493. doi:10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  20. Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24(1):5–8. doi:10.1021/la702923w

    Article  Google Scholar 

  21. Olsson RT, Kraemer R, López-Rubio A, Torres-Giner S, Ocio MJ, JMa L (2010) Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns. Macromolecules 43(9):4201–4209. doi:10.1021/ma100217q

    Article  CAS  Google Scholar 

  22. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85(1):228–236. doi:10.1016/j.carbpol.2011.02.021

    Article  Google Scholar 

  23. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  24. Hamad W (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can J Chem Eng 84(5):513–519. doi:10.1002/cjce.5450840501

    Article  CAS  Google Scholar 

  25. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765. doi:10.3390/polym2040728

    Article  CAS  Google Scholar 

  26. Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valori 1(1):121–134. doi:10.1007/s12649-010-9009-7

    Article  CAS  Google Scholar 

  27. Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355. doi:10.1002/pat.1995.220060514

    Article  CAS  Google Scholar 

  28. Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171. doi:10.1007/s10853-007-1699-2

    Article  CAS  Google Scholar 

  29. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3):674–681. doi:10.1021/bm901254n

    Article  CAS  Google Scholar 

  30. Xu X, Yang YQ, Xing YY, Yang JF, Wang SF (2013) Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym 98(2):1573–1577. doi:10.1016/j.carbpol.2013.07.065

    Article  CAS  Google Scholar 

  31. Voronova MI, Surov OV, Guseinov SS, Barannikov VP, Zakharov AG (2015) Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr Polym 130:440–447. doi:10.1016/j.carbpol.2015.05.032

    Article  CAS  Google Scholar 

  32. Duman O, Tunç S, Çetinkaya A (2012) Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloid Surf A 394:23–32. doi:10.1016/j.colsurfa.2011.11.018

    Article  CAS  Google Scholar 

  33. Segal L, Creely J, Martin AJ, Conrad C (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  34. Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT Food Sci Technol 44(2):465–472. doi:10.1016/j.lwt.2010.08.018

    Article  Google Scholar 

  35. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi:10.1021/la001070m

    Article  CAS  Google Scholar 

  36. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299. doi:10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  37. De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19(1):24–29. doi:10.1021/la020475z

    Article  CAS  Google Scholar 

  38. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99. doi:10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  39. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69(7–8):1212–1217. doi:10.1016/j.compscitech.2009.02.024

    Article  CAS  Google Scholar 

  40. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – soy hulls. Ind Crop Prod 42:480–488. doi:10.1016/j.indcrop.2012.06.041

    Article  Google Scholar 

  41. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46(15):5637–5644. doi:10.1016/j.polymer.2005.04.069

    Article  CAS  Google Scholar 

  42. Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 105(5):2978–2983. doi:10.1002/app.26580

    Article  CAS  Google Scholar 

  43. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677. doi:10.1021/bm034519+

    Article  CAS  Google Scholar 

  44. Martinez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98(1):1072–1082. doi:10.1016/j.carbpol.2013.07.020

    Article  CAS  Google Scholar 

  45. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  46. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296. doi:10.1016/j.polymer.2008.01.028

    Article  CAS  Google Scholar 

  47. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660. doi:10.1016/j.polymer.2010.04.007

    Article  CAS  Google Scholar 

  48. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39(5):738–746. doi:10.1016/j.compositesa.2008.02.003

    Article  Google Scholar 

  49. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485. doi:10.1016/j.ultsonch.2011.11.007

    Article  CAS  Google Scholar 

  50. Fortunati E, Luzi F, Puglia D, Terenzi A, Vercellino M, Visai L, Santulli C, Torre L, Kenny JM (2013) Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II. Carbohydr Polym 97(2):837–848. doi:10.1016/j.carbpol.2013.05.015

    Article  CAS  Google Scholar 

  51. Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17(1):36–40. doi:10.1016/j.jiec.2010.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok and to Kasetsart University, Thailand for supplying facilities and to the Scholarship Program for International Graduate Students 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakit Sukyai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, N.T., Saewong, W. & Sukyai, P. Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites. J Polym Res 24, 71 (2017). https://doi.org/10.1007/s10965-017-1232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1232-5

Keywords

Navigation