Skip to main content

Advertisement

Log in

Preparation of Bionanomaterials and their Polymer Nanocomposites from Waste and Biomass

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nature is gifted with several nanomaterials which could be easily prepared from animals and plants. Cellulose, chitin and starch are abundant, natural, renewable and biodegradable polymers. By intelligent processing techniques they could be used as classical nano reinforcing elements in polymers. They are often called whiskers. These whiskers are almost defect free and as a result, their properties are comparable to perfect crystals. In most cases, aqueous suspensions of these nano crystallites are prepared by acid hydrolysis process. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. The reinforcing ability of these natural whiskers stem from their chemical nature and hierarchical structure. During the past decade, many studies have been devoted to mimic biocomposites by blending natural whiskers from waste and biomass sources with various polymer matrices. In this review article, the recent advances on the preparation and characterization of nanowhiskers from waste and biomass and their polymer nanocomposites have been reported. Finally the emerging applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Crawford, R.L.: Lignin biodegradation and transformation. Wiley, New York (1981). ISBN 0-471-05743-6

  2. Young, R.: Cellulose structure modification and hydrolysis. Wiley, New York (1986). ISBN 0471827614

  3. Klemm, D., Brigitte, H., Hans-Peter, F., Andreas, B.: Cellulose: fascinating biopolymer and sustainable raw material. J. ChemInform 36(36) (2005). doi:10.1002/chin.200536238

  4. Updegraff, D.M.: Semimicro determination of cellulose in biological materials. J. Anal. Biochem. 32, 420–424 (1969). doi:10.1016/S0003-2697(69)80009-6

    Article  Google Scholar 

  5. Cellulose.: In Encyclopedia Britannica. Encyclopedia Britannica Online Retrieved January 11, 2008 (2008)

  6. Bledzki, A.K., Reihmane, S., Gassan, J.: Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59, 1329–1336 (1996)

    Article  Google Scholar 

  7. Satyanarayana, K.G., Sukumaran, K., Mukherjee, P.S., Pavitharan, C.P.: Natural fibre–polymer composites. Cement. Concrete. Compos. 12, 117–136 (1990)

    Article  Google Scholar 

  8. Bismarck, A., Mishra, S., Lampke, T.: Plant Fibers as Reinforcement for Composites.: Natural Fibers, Biopolymers and Biocomposites, pp. 37–108. CRC Press, Boca Raton, FL (2005)

    Google Scholar 

  9. Klason, C., Kubat, J., Stromvall, H.E.: The efficiency of cellulosic fillers in common thermoplastics. Part II. Filling with processing aids and coupling agents. Int. J. Polyrn. Mater. 11(1), 9–38 (1985)

    Article  Google Scholar 

  10. Zadorecki, P., Michell, A.J.: Future prospects for wood cellulose as reinforcement in organic polymer composites. J. Polym. Compos. 10(2), 69–77 (1989)

    Article  Google Scholar 

  11. Maldas, D., Kokta, B.V., Raj, R., Daneault, G.C.: Improvement of the mechanical properties of sawdust wood fibre-polystyrene composites by chemical treatment. J. Polymer. 29(7), 1255–1265 (1988)

    Article  Google Scholar 

  12. Grunert, M., Winter, T.W.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10(1), 27–30 (2002)

    Article  Google Scholar 

  13. Tashiro, K., Kobayashi, M.: Lattice-dynamical prediction of the limiting young’s modulus of liquid crystalline arylate polymers: comparison with typical rigid-rod polymers. Polymer 32(3), 454–463 (1991)

    Article  Google Scholar 

  14. Samir, A.M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. J. Biomacromolecules 6, 612–626 (2005)

    Article  Google Scholar 

  15. Li, J., Revol, J.F., Marchessault, R.H.: Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J. Appl. Polym. Sci. 65, 373 (1997)

    Article  Google Scholar 

  16. Yamaguchi, Y., Nge, T.T., Takemura, A., Hori, N., Ono, H.: Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy. J. Biomacromolecules 6, 1941–1947 (2005)

    Article  Google Scholar 

  17. Krajewska, B.: Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. J. Enzyme Microbiol. Technol. 35, 126–139 (2004)

    Article  Google Scholar 

  18. Yusof, N.L., Wee, A., Lim, L.Y., Khor, E.: Flexible chitin films as potential wound-dressing materials: wound model studies. J. Biomed. Mater. Res. A. 66A, 224–232 (2003)

    Article  Google Scholar 

  19. Hudson, S.M.: Applications of chitin and chitosan as fiber and textile chemicals. In: Domard, A., Roberts, G.A.F., Vårum, K.M. (eds.) Advances in Chitin Science, vol. 2, pp. 590–599. Jacques Andre′ Publ., Lyon (France) (1998)

  20. Kanke, M., Katayama, H., Tsuzuki, S., Kuramoto, H.: Application of chitin and chitosan to pharmaceutical preparations. J. Cheam Pharm Bull. 37, 523–525 (1989)

    Google Scholar 

  21. Kato, Y., Onishi, H., Machida, Y.J.: Application of chitin and chitosan derivatives in the pharmaceutical field. J. Curr. Pharm. Biotechnol. 4, 303–309 (2003)

    Article  Google Scholar 

  22. Marguerite, R.: Chitin and chitosan: properties and applications. J. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  Google Scholar 

  23. Rovel, J.-F., Marchessaultf, R.H.: In vitro chiral nematic ordering of chitin crystallites. J. Biomacromolecules 15, 329–335 (1993)

    Google Scholar 

  24. Muzzarelli, R.A.: Chitin Microfibrils. In Chitin. pp. 51–55, Pergamon Press: New York (1977)

  25. Brine, C.J., Austin, P.R.: Renatured chitin fibrils, films and filaments. In: Church, T.D. (ed.) Marine Chemistry in the Costal Environment. ACS Symposium series 18, pp. 505–518. American Chemical Society, Washington, DC (1975)

  26. Murry, S.B., Neville, A.C.: The role of electrostatic coat in the formation of cholestric liquid crystal spherulites from alpha-chitin. J. Int. Boil. Macromol. 20, 123–130 (1997)

    Article  Google Scholar 

  27. Murry, S.B., Neville, A.C.: The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. J. Int. Boil. Macromol. 22, 137–144 (1998)

    Article  Google Scholar 

  28. Gopalan, N.K., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. J. Biomacromolecules 4(3), 657–665 (2003)

    Article  Google Scholar 

  29. Morin, A., Dufresne, A.: Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). J. Macromolecules 35, 2190–2199 (2002)

    Article  Google Scholar 

  30. Gopalan, N.K., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. J. Biomacromolecules 4(3), 666–674 (2003)

    Article  Google Scholar 

  31. Gopalan, N.K., Dufresne, A.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. J. Biomacromolecules 4(6), 1835–1842 (2003)

    Article  Google Scholar 

  32. Samir, M.A.S., Alloin, A.F., Sanche, J.Y., Kissi, N.E., Dufresne, A.: Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. J. Macromolecules 37, 1386–1393 (2004)

    Article  Google Scholar 

  33. Averous, L.: Biodegradable multiphase system based on plasticized starch: a review. J. Macromol. Sci. C Polym. Rev. C44, 231–274 (2004)

    Google Scholar 

  34. Ray, S.S., Bousmia, M.: Biodegradable polymers and their layered silicate nanocomposites. J. Prog. Mater. Sci. 50, 962–1079 (2005)

    Article  Google Scholar 

  35. Brown, W.H., Poon, T.: Introduction to Organic Chemistry (3rd ed.). Wiley, Hoboken, NJ (2005). ISBN 0-471-44451-0

  36. Kuga, S., Brown, R.M.: Silver labeling of the reducing ends of bacterial cellulose. J. Carbohydr. Res. 180, 345–350 (1988)

    Article  Google Scholar 

  37. Andress, K.R.Z.: J. Phys. Chem. Abt. B 4, 190 (1929)

    Google Scholar 

  38. Blackwell, J., Kolpak, F.: Determination of the structure of cellulose II. J. Macromolecules 9, 273–278 (1976)

    Article  Google Scholar 

  39. Chanzy, H., Nishiyama, Y., Langan, P.: A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121(43), 9940–9946 (1999)

    Article  Google Scholar 

  40. Watanabe, S., Ohkita, J., Hayashi, J., Sufoka, A.: The conformation of existence of cellulose III1, III2, IV1 and IV2, by the X-ray method. J. Polym. Lett. 13, 23–27 (1975)

    Article  Google Scholar 

  41. Sarko, A.J., Southwick, J., Hayashi, J.: Packing analysis of carbohydrates and polysaccharides 7. Crystal structure of cellulose III, and its relationship to other cellulose polymorphs. Macromolecules 9, 857–863 (1976)

    Article  Google Scholar 

  42. Chanzy, H., Buleon, A.: Single crystals of cellulose IVII, preparation and properties. J. Polym. Sci. Polym. Phys. Ed. 18, 1209–1217 (1980)

    Article  Google Scholar 

  43. Togawa, E., Brown, R.M., Kondo, T.J.: Nematic ordered cellulose: a concept of glucan chain association. Biomacromolecules 2(4), 1324–1330 (2001)

    Article  Google Scholar 

  44. Gonell, H.W.: Rötgenographische studien an chitin. J. Z. Physiol. Chem. 152, 18–30 (1926)

    Google Scholar 

  45. Clark, G.L., Smith, A.F.: X-ray studies of chitin, chitosan, and derivatives. J. Phys. Chem. 40, 863–879 (1936)

    Article  Google Scholar 

  46. Gardner, K.H., Blackwell, J.: Refinement of the structure of β-chitin. J. Biopolymers 14, 1581–1595 (1975)

    Article  Google Scholar 

  47. Minke, R., Blackwell, J.: The structure of α-chitin. J. Mol. Biol. 120, 167–181 (1978)

    Article  Google Scholar 

  48. Saito, Y., Okano, T., Chanzy, H., Sugiyama, J.: Structural study of α-chitin from the grasping spine of the arrow worm (Sagitta spp.). J. Struct. Biol. 114, 218–228 (1995)

    Article  Google Scholar 

  49. Chanzy, H.: Chitin crystals. In: Domard, A., Roberts, G.A.F., Va˚rum′, K.M. (eds.) Advances in Chitin Science, pp. 11–21. Jacques Andre, Lyon, France (1998)

    Google Scholar 

  50. Chre′tiennot-Dinet, M.-J., Giraud-Guille, M.-M., Vaulot, D., Putaux, J.-L., Chanzy, H.: The chitinous nature of filament ejected by phaeocystis (prymnesiophycae). J. Phycol. 33, 666–672 (1997)

    Article  Google Scholar 

  51. Gaill, F., Persson, J., Sugiyama, P., Vuong, R., Chanzy, H.: The chitin system in the tubes of deep sea hydrothermal vent worms. J. Struct. Biol. 109, 116–128 (1992)

    Article  Google Scholar 

  52. Blackwell, J.: Structure of β-chitin or parallel chain systems of poly-b-(1-4)-N-acetyl-d-glucosamine. J. Biopolymers 7, 281–298 (1969)

    Article  Google Scholar 

  53. Darmon, S.E., Rudall, K.M.: Infra-red and X-ray studies of chitin. J. Disc. Faraday. Soc. 9, 251–260 (1950)

    Article  Google Scholar 

  54. Pearson, F.G., Marchessault, R.H., Liang, C.Y.: Infrared spectra of crystalline polysaccharides. V. Chitin. J. Polym. Sci. 13, 101–116 (1960)

    Article  Google Scholar 

  55. Falk, M., Smith, D.G., McLachlan, J., McInnes, A.G.: Studies on chitin (β-(1–4)-linked 2-acetamido-2-deoxy-D-glucan) fibers of the diatom Thalassiosira fluviatilis Hustedt. II. Proton magnetic resonance, infrared, and X-ray studies. Can J. Chem. 44, 2269–2281 (1966)

    Article  Google Scholar 

  56. Galat, A., Koput, J., Popowicz, J.: Analyses of infrared amide bands of chitin. J. Acta Biochim. Polonica. 26, 303–308 (1979)

    Google Scholar 

  57. Iwamoto, R, Miya, M., Mima, S.: Vibrational polarization spectra of α-type chitin. In: Hirano, S., Tokura, S. (eds.) Chitin and Chitosan. Proceedings of the Second International Conference on Chitin and Chitosan, pp. 82–86. The Japanese Society of Chitin and Chitosan, Sapporo (1982)

  58. Focher, B., Naggi, A., Torri, G., Cosani, A., Terbojevich, M.: Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS 13CNMR, FT-IR and FT-Raman spectroscopy. J. Carbohydr. Polym. 17, 97–102 (1992)

    Article  Google Scholar 

  59. Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Arguelles-Monal, W., Desbrieres, J., Rinaudo, M.: An infrared investigation in relation with chitin and chitosan characterization. J. Polymer. 42, 3559–3580 (2001)

    Article  Google Scholar 

  60. Battacharya, M., Vaidya, U.R.: Properties of blends of starch and synthetic polymers containing anhydride groups. J. Appl. Polym. Sci. 52(5), 617–628 (1994)

    Article  Google Scholar 

  61. Westoff, R.P., Oety, F.H., Mehlttter, C.L., Russell, C.R.: Starch-filled polyvinyl chloride plastics-preparation and evaluation. J. Ind. Eng. Chem., Prod. Res. Dev. 13, 123–125 (1974)

    Article  Google Scholar 

  62. Griffin, G.J., Priority, L.: U.K. Patent 1, 485, 833 (1972)

  63. Favier, V., Chanzy, H., Cavaille, J.Y.: Polymer nanocomposites reinforced by cellulose whiskers V. J. Macromolecules 28, 6365–6367 (1996)

    Article  Google Scholar 

  64. Oksman, K., Bondeson, D.: Polylactic acid/cellulose whisker nanocomposites modifiedvby polyvinyl alcohol. J. Compos. Part A 38, 2486–2492 (2007)

    Article  Google Scholar 

  65. Farjon, A.: Pinaceae. Drawings and Descriptions of the Genera. Koeltz Scientific Books (1990). ISBN 3-87429-298-3

  66. Rushforth, K., Conifers. H.: ISBN 0-7470-2801-X.Gymnosperm Database: Picea abies (1987)

  67. Conifer Specialist Group.: Picea Abies. IUCN Red List of Threatened Species. IUCN (1998). www.iucnredlist.org. Retrieved on 12 May (2006)

  68. Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. J. Compos. Sci. Technol. 66, 2776–2784 (2006)

    Article  Google Scholar 

  69. Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002)

    Article  Google Scholar 

  70. Tokoh, C., Takabe, K., Fujita, M., Saiki, H.: Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. J. Cellulose 5(13), 249–261 (1998)

    Article  Google Scholar 

  71. Ranby, B.G.: Physico-chemical investigations on bacterial cellulose. Ark. Kemi 4, 249–257 (1952)

    Google Scholar 

  72. Michel, P., Dufresne, A.: Chitin whisker reinforced thermoplastic nanocomposites. J. Macromolecules 34, 19 (2001)

    Google Scholar 

  73. Gopalan, N.K., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. J. Biomacromolecules 4, 657–665 (2003)

    Article  Google Scholar 

  74. Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R.: Preparation and characterization of a-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. J. Carbohydr. Polym. 62, 130–136 (2005)

    Article  Google Scholar 

  75. Lu, Y., Weng, L., Zhang, L.: Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. J. Biomacromolecules 5, 1046–1051 (2004)

    Article  Google Scholar 

  76. Angellier, H., Boisseau, S.M., Lebrun, L., Dufresne, A.: Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. J. Macromolecules 38, 3783–3792 (2005)

    Article  Google Scholar 

  77. Bondeson, D., Mathew, A.P., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. J. Cellulose 13, 171–180 (2006)

    Article  Google Scholar 

  78. Kvien, I., Bjørn, S.T., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron. J. Biomacromolecules 6, 3160–3165 (2005)

    Article  Google Scholar 

  79. Gopalan, K.N., Dufresne, A.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. J. Biomacromolecules 4, 1835–1842 (2003)

    Article  Google Scholar 

  80. Mathew, A.P., Laborie, M.P.G., Oksman, K.: Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. J. Biomacromolecules 10, 1627–1632 (2009)

    Article  Google Scholar 

  81. Hajji, P., Cavaille, J.Y., Favier, V., Gauthier, C., Vigier, G.: Tensile behavior of nanocomposites from latex and cellulose whiskers. J. Polym. Compos. 17, 4 (1996)

    Article  Google Scholar 

  82. Azizi, S.M.A.S., Alloin, F., Jean-Yves, S., Dufresne, A.: Cellulose nanocrystals reinforced poly(oxyethylene). J. Polymer. 45, 4149–4157 (2004)

    Article  Google Scholar 

  83. Kulpinski, P.: Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J. Appl. Polym. Sci. 98, 1855–1859 (2005)

    Article  Google Scholar 

  84. Torres, G.F.G., Clara, M.G., Acta, M.C.B.: Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications Cristian. J. Biomaterialia. 5, 1605–1615 (2009)

    Article  Google Scholar 

  85. Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R.: Preparation and characterization of a-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. J. Polymer. 46, 5637–5644 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visakh, P.M., Thomas, S. Preparation of Bionanomaterials and their Polymer Nanocomposites from Waste and Biomass. Waste Biomass Valor 1, 121–134 (2010). https://doi.org/10.1007/s12649-010-9009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9009-7

Keywords

Navigation