Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

This article was retracted on 01 June 2017

Abstract

It is fact that Polymers and their products have changed the face of the world in all the field of the technology. They are the future of the coming up generation of the research of the world. But this is also fact that these synthetic non biodegradable polymers have created a tough situation for the living being for a healthy life. Polyhydroxyalkanoates are polyesters produced by bacteria as intracellular storage materials in response to a variety of nutritional and environmental conditions, such as nitrogen limitation Polyhydroxyalkanoates (PHAs) are gaining increasing attention in the biodegradable polymer market due to their promising properties such as high biodegradability in different environments, not just in composting plants, and processing versatility. Indeed among biopolymers, these biogenic polyesters represent a potential sustainable replacement for fossil fuel-based thermoplastics. Most commercially available PHAs are obtained with pure microbial cultures grown on renewable feedstocks (i.e.glucose) under sterile conditions but recent research studies focus on the use of wastes as growth media.PHA can be extracted from the bacteria cell and then formulated and processed by extrusion for production of rigid and flexible plastic suitable not just for the most assessed medical applications but also considered for applications including packaging, moulded goods, paper coatings, non-oven fabrics, adhesives, films and performance additives. The present paper reviews the PHAs, their main properties, processing aspects, commercially available ones, as well as limitations and related improvements being researched,with specific focus on potential applications of PHAs in packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bugnicourt E, Schmid M, Nerney OM, Wildner J, Smykala L, Lazzeri A, Cinelli P (2013) Processing and val-idation of whey-protein-coated films and laminates at semi-industrial scale as novel recyclable food packag-ing materials with excellent barrier properties. Adv Mater Sci Eng 2013:496207/1–496207/10. doi:10.1155/2013/496207

    Article  Google Scholar 

  2. Cinelli P., Lazzeri A., Anguillesi I., Bugnicourt E.: Oli-PHA a novel and efficient method for the production of polyhydroxyalkanoate polymer-based packaging from olive oil waste water. in ‘Proceedings of 3rd Inter-national Conference on industrial and hazardous waste management. Chania, Crete, Greece’ p8 (2012)

  3. Koller M, Braunegg G (2015) Review: Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production. Bioengineering 2:94–121. doi:10.3390/bioengineering2020094

    Article  Google Scholar 

  4. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jérôme R, Dubois P (2002) Poly(#-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43:4017–4023. doi:10.1016/S0032-3861(02)00229-X

    Article  CAS  Google Scholar 

  5. Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng Q 28:65–77

    CAS  Google Scholar 

  6. Biron M (2013) The plastics industry: Economic overview. In: Biron M (ed) Thermoplastics and thermoplastic composites. William Andrew Publishing, Norwich, pp. 31–153

    Chapter  Google Scholar 

  7. Dikgang J, Leiman A, Visser M (2012) Analysis of the plastic-bag levy in South Africa. Resour Conserv Recycl 66:59–65. doi:10.1016/j.resconrec.2012.06.009

    Article  Google Scholar 

  8. Meneses J, Corrales CM, Valencia M (2007) Synthesis and characterization of biodegradable polymers from cassava starch (in Spanish). Revista EIA 8:57–67

    CAS  Google Scholar 

  9. Mutha NH, Patel MK, Premnath V (2006) Plastics materials flow analysis for India. Resour Conserv Recycl 47:222–244. doi:10.1016/j.resconrec.2005.09.003

    Article  Google Scholar 

  10. Mulder KF (1998) Sustainable consumption and production of plastics? Technol Forecast Soc Chang 58:105–124. doi:10.1016/S0040-1625(97)00129-7

    Article  Google Scholar 

  11. Varsha YM, Savitha R (2011) Overview on polyhydroxyalkanoates: a promising biopol. J Microbial Biochem Technol 3:99–105. doi:10.4172/1948-5948.1000059

    CAS  Google Scholar 

  12. Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymer 6:706–754

    Article  Google Scholar 

  13. Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266

    Article  CAS  Google Scholar 

  14. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583. doi:10.1016/j.progpolymsci.2012.06.003

    Article  CAS  Google Scholar 

  15. Noda I, Marchessault RH, TeraSda M (1999) Polymer data handbook. Oxford Univ. Press, London

    Google Scholar 

  16. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): Review of synthesis,characteristics, processing and potential applications in Packaging. eXPRESS Polymer Letters 8(11):791–808

    Article  Google Scholar 

  17. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends. Polym Test 21:665–674. doi:10.1016/S0142-9418(01)00142-8

    Article  CAS  Google Scholar 

  18. de Köning GJM, Lemstra PJ (1993) Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation Polymer 34:4089–4094. doi:10.1016/0032-3861(93)90671-V

    Google Scholar 

  19. Holmes PA (1985) Applications of PHB – a microbially produced biodegradable thermoplastic. Phys Technol 16:32–41. doi:10.1088/0305-4624/16/1/305

    Article  CAS  Google Scholar 

  20. Di Lorenzo ML, Raimo M, Cascone E, Martuscelli E (2001) Poly(3-hydroxybutyrate)-based copolymers and blends: influence of a second component on crystallization and thermal behavior. J Macromol Sci Part B Phys 40:639–667. doi:10.1081/mb-100107554

    Article  Google Scholar 

  21. Androsch R (2008) Surface structure of folded-chain crystals of poly(R-3-hydroxybutyrate) of different chain length. Polymer 49:4673–4679. doi:10.1016/j.polymer.2008.08.02619

    Article  CAS  Google Scholar 

  22. Wunderlich B (2003) Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450. doi:10.1016/S0079-6700(02)00085-0

    Article  CAS  Google Scholar 

  23. Di Lorenzo ML, Gazzano M, Righetti MC (2012) The role of the rigid amorphous fraction on cold crystallization of poly(3-hydroxybutyrate). Macromolecules 45:5684–5691. doi:10.1021/ma3010907

    Article  Google Scholar 

  24. Schick C, Wurm A, Mohamed A (2002) Dynamics of reversible melting revealed from frequency dependent heat capacity. Thermochim Acta 392–393:303–313. doi:10.1016/S0040-6031(02)00116-8

    Article  Google Scholar 

  25. Doi Y, Mukai K, Kasuya K, Yamada K (1994) Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. Studies in Polymer Science 12:39–51

    Article  CAS  Google Scholar 

  26. Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(−(D)-%-hydroxybutyric acid): part 1 – identification and quantitative analysis of products. Polym Degrad Stab 6:47–61. doi:10.1016/0141-3910(84)90016-8

    Article  CAS  Google Scholar 

  27. Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(−(D)-%-hydroxybutyric acid): part 2 – changes in molecular weight. Polym Degrad Stab 6:95–103. doi:10.1016/0141-3910(84)90075-2

    Article  CAS  Google Scholar 

  28. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. doi:10.1023/a:1021013921916

    Article  CAS  Google Scholar 

  29. Erceg M, Kovačić T, Klarić I (2005) Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318. doi:10.1016/j.polymdegradstab.2005.04.048

    Article  CAS  Google Scholar 

  30. Di Lorenzo ML, Sajkiewicz P, La Pietra P, Gradys A (2006) Irregularly shaped DSC exotherms in the analysis of polymer crystallization. Polym Bull 57:713–721. doi:10.1007/s00289-006-0621-4

    Article  Google Scholar 

  31. Donth EJ (1992) Relaxation and thermodynamics in poly-mers. Akademie Verlag, Berlin

    Google Scholar 

  32. Scandola M, Ceccorulli G, Doi Y (1990) Viscoelastic relax-ations and thermal properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Int J Biol Macromol 12:112–117. doi:10.1016/0141-8130(90)90062-F

    Article  CAS  Google Scholar 

  33. Mitomo H, Barham PJ, Keller A (1988) Temperature dependance of mechanical properties of poly(%-hydroxybutyrate-%-hydroxyvalerate). Polym Compos 29:112–115

    CAS  Google Scholar 

  34. Zhang L, Deng X, Zhao S, Huang Z (1997) Biodegradable polymer blends of poly(3-hydroxybutyrate) and hydrox-yethyl cellulose acetate. Polymer 38:6001–6007. doi:10.1016/S0032-3861(97)00158-4

    Article  CAS  Google Scholar 

  35. Ahmed T, Marcal ,H, Lawless M, Wanandy NS, Chiu ,A, Foster LJR (2010) Polyhydroxybutyrate and its copolymer with polyhydroxyvalerate as biomaterials: influence on progression of stem cell cycle. Biomacromolecules 11:2707–2715. doi:10.1021/bm1007579

    Article  CAS  Google Scholar 

  36. Qiu Y-Z, Han J, Guo J-J, Chen G-Q (2005) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and pseudomonas putida. Biotechnol Lett 27:1381–1386. doi:10.1007/s10529-005-3685-620

    Article  CAS  Google Scholar 

  37. Kedia G, Passanha P, Dinsdale RM, Guwy AJ, Esteves SR (2014) Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator. Biotechnol Bioprocess Eng 19:989–995

    Article  CAS  Google Scholar 

  38. Caballero KP, Karel SF, Register RA (1995) Biosynthe-sis and characterization of hydroxybutyratehydroxy- caproate copolymers. Biomacromolecules 17:86–92. doi:10.1016/0141-8130(95)93522-Y

    CAS  Google Scholar 

  39. Zhao K, Deng Y, Chen JC (2003) Chen G-Q.: Polyhydrox-yalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045. doi:10.1016/S0142-9612(02)00426-X

    Article  CAS  Google Scholar 

  40. Avella M, Martuscelli E, Raimo M (2000) Review: proper-ties of blends and composites based on poly(3-hydroxy) butyrate (PHB) and poly(3-hydroxybutyrate-hydroxy-valerate) (PHBV) copolymers. J Mater Sci 35:523–545. doi:10.1023/A:1004740522751

    Article  CAS  Google Scholar 

  41. Scaffaro R, Dintcheva NT, Marino R, La Mantia FP (2012) Processing and properties of biopolymer/polyhydroxyalkanoates blends. J Polym Environ 20:267–272. doi:10.1007/s10924-011-0385-2

    Article  CAS  Google Scholar 

  42. Innocentini-Mei LH, Bartoli JR, Baltieri RC (2003) Mechanical and thermal properties of poly(3-hydroxybutyrate)blends with starch and starch derivatives. Macromol Symp 197:77–88. doi:10.1002/masy.200350708

    Article  CAS  Google Scholar 

  43. Shen L, Haufe J, Patel M (2009) Product overview and market projection of emerging bio-based plastics. PROBIP 2009, Final report, Utrecht

  44. Hong S-G, Hsu H-W, Ye M-T (2013) Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim 111:1243–1250. doi:10.1007/s10973-012-2503-3

    Article  CAS  Google Scholar 

  45. Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influ-ence of poly (ethylene glycol) on the thermal, mechan-ical, morphological, physical–chemical and biodegra-dation properties of poly (3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959. doi:10.1016/j.polymdegradstab.2006.02.008

    Article  CAS  Google Scholar 

  46. Rodrigues JAFR, Parra DF, Lugão AB (2005) Crys-tallization on films of PHB/PEG blends. J Therm Anal Calorim 79:379–381. doi:10.1007/s10973-005-0069-z

    Article  CAS  Google Scholar 

  47. Wang L, Zhu W, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybu-tyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173. doi:10.1002/app.27004

    Article  CAS  Google Scholar 

  48. de Oliveira PS, Pereira FV, dos Santos MC, de Souza PP, Roa JPB, Orefice RL (2013) Increasing the elongation at break of polyhydroxybutyrate biopoly-mer: Effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. doi:10.1002/app.37811

    Article  Google Scholar 

  49. Modi SJ (2010) Assessing the feasibility of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(lactic acid) for potential food packaging applica-tions. PhD Thesis, Ohio State University, Colombus

  50. Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2012) The effect of nucleating agents on physical properties of poly-3-hydroxybutyrate (PHB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-co-HV) produced by Burkholderia cepacia ATCC 17759. Polym Test 31:579–585. doi:10.1016/j.polymertesting.2012.03.004

    Article  CAS  Google Scholar 

  51. Corrêa MCS, Branciforti MC, Pollet E, Agnelli JAM, Nascente PAP, Avérous L (2012) Elaboration and characterization of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) withorgano-modified montmorillonite. J Polym Environ 20:283–290. doi:10.1007/s10924-011-0379-0

    Article  Google Scholar 

  52. Whitehouse RSs (2011) Toughened polyhydroxyalkanoate compositions. WO 2011031558 A3, World Patent

  53. Harasawa I, Hariki Y, Maeda K, Nakamura K (1980) Method for cultivating algae and a covering material used therefor. U.S. Patent 4235043 A, USA

  54. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. doi:10.1016/j.progpolymsci.2006.03.002

    Article  CAS  Google Scholar 

  55. Scandola M, Ceccorulli G, Pizzoli M (1992) Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules 25:6441–6446. doi:10.1021/ma00050a009

    Article  CAS  Google Scholar 

  56. Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I (1997) )wierczek S., Gnatowski M., Kowalczuk M., Jedli*ski Z.: polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies. Macromolecules 30:2568–2574. doi:10.1021/ma961431y

    Article  CAS  Google Scholar 

  57. Choi HJ, Kim J, Jhon MS (1999) Viscoelastic character-ization of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 40:4135–4138. doi:10.1016/S0032-3861(98)00627-2

    Article  CAS  Google Scholar 

  58. Avella M, Martuscelli E, Raimo M (1993) The fractionated crystallization phenomenon in poly(3-hydroxybutyrate)/poly(ethylene oxide) blends. Polymer 34:3234–3240. doi:10.1016/0032-3861(93)90396-R

    Article  CAS  Google Scholar 

  59. Gassner F, Owen AJ (1994) Physical properties of poly(%-hydroxybutyrate)-poly(#-caprolactone) blends. Polymer 35:2233–2236. doi:10.1016/0032-3861(94)90258-5

    Article  CAS  Google Scholar 

  60. Abe H, Doi Y, Kumagai Y (1994) Synthesis and characteri-zation of poly[(R,S)-3-hydroxybutyrate-b-6-hydroxy-hexanoate] as a compatibilizer for a biodegradable blend of poly[(R)-3-hydroxybutyrate] and poly(6-hydroxyhexanoate). Macromolecules 27:6012–6017. doi:10.1021/ma00099a012

    Article  CAS  Google Scholar 

  61. Choi HJ, Kim JH, Kim J, Park SH (1997) Mechanical spectroscopy study on biodegradable synthetic and biosynthetic aliphatic polyesters. Macromol Symp 119:149–155. doi:10.1002/masy.19971190115

    Article  CAS  Google Scholar 

  62. Paglia ED, Beltrame PL, Canetti M, Seves A, Marcandalli B, Martuscelli E (1993) Crystallization and thermal behaviour of poly (D(+) 3-hydroxybutyrate)/poly(epichlorohydrin) blends. Polymer 34:996–1001. doi:10.1016/0032-3861(93)90220-5

    Article  Google Scholar 

  63. Sharma R, Ray AR (1995) Polyhydroxybutyrate, its copolymers and blends. J Macromol Sci Polym Rev 35:327–359. doi:10.1080/15321799508009640

    Article  Google Scholar 

  64. Duarte MAT, Hugen RG, Sant'Anna ME, Pezzin APT, Pezzin SH (2006) Thermal and mechanical behavior of injection molded poly(3-hydroxybutyrate)/poly(#-caprolactone) blends. Mater Res 9:25–28. doi:10.1590/S1516-14392006000100006

    Article  CAS  Google Scholar 

  65. Ceccorulli G, Pizzoli M, Scandola M (1993) Effect of a low-molecular-weight plasticizer on the thermal and viscoelastic properties of miscible blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate. Macromolecules 26:6722–6726. doi:10.1021/ma00077a00522

    Article  CAS  Google Scholar 

  66. Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization kinetics and morphology of poly(3-hydroxyl butyrate) /cellulose ester blends. Macromolecules 27:4755–4761. doi:10.1021/ma00095a016

    Article  CAS  Google Scholar 

  67. Park JW, Doi Y, Iwata T (2005) Unique crystalline orientation of poly[(R)-3-hydroxybutyrate]/cellulose propionate blends under uniaxial drawing. Macromolecules 38:2345–2354. doi:10.1021/ma0481611

    Article  CAS  Google Scholar 

  68. Gazzano M, Mazzocchetti L, Pizzoli M, Scandola M (2012) Crystal orientation switching in spherulites grown from miscible blends of poly(3-hydroxybutyrate) with cellulose tributyrate. J Polym Sci B Polym Phys 50:1463–1473. doi:10.1002/polb.23147

    Article  CAS  Google Scholar 

  69. Kumagai Y, Doi Y (1992) Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers. Polym Degrad Stab 37:253–256. doi:10.1016/0141-3910(92)90167-4

    Article  CAS  Google Scholar 

  70. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763. doi:10.1016/j.compscitech.2006.11.009

    Article  CAS  Google Scholar 

  71. Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66:480–493. doi:10.1016/j.carbpol.2006.04.004

    Article  Google Scholar 

  72. Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 47:179–186. doi:10.1016/j.eurpolymj.2010.11.010

    Article  CAS  Google Scholar 

  73. Gogolewski S, Jovanovic M, SM P, JG D, MK H (1993) The effect of melt-processing on the degradation of selected polyhydroxyacids: Polylactides, polyhydroxybutyrate, and polyhydroxybu-tyrate-covalerates. Polym Degrad Stab 40:313–322. doi:10.1016/0141-3910(93)90137-8

    Article  CAS  Google Scholar 

  74. Bordes PH, Pollet E, Avérous L (2009) Effect of clay organomodifiers on degradation of polyhydroxy alkanoates. Polym Degrad Stab 94:789–796. doi:10.1016/j.polymdegradstab.2009.01.027

    Article  CAS  Google Scholar 

  75. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Bio - degradability of plastics. Int J Mol Sci 10:3722–3742. doi:10.3390/ijms10093722

    Article  CAS  Google Scholar 

  76. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67. doi:10.1016/S0960-8524(99)00144-3

    Article  CAS  Google Scholar 

  77. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438. doi:10.1016/0167-7799(96)10061-5

    Article  CAS  Google Scholar 

  78. Nishida H, Tokiwa Y (1993) Distribution of poly(%-hydrox-ybutyrate) and poly(#-caprolactone)aerobic degrading microorganisms in different environments. Journal of Environmental Polymer Degradation 1:227–233. doi:10.1007/bf01458031

    Article  CAS  Google Scholar 

  79. Mergaert J, Swings J (1996) Biodiversity of microorgan-isms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17:463–469. doi:10.1007/bf01574777

    Article  CAS  Google Scholar 

  80. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    CAS  Google Scholar 

  81. Chowdhury AA (1963) Poly-%-hydroxybuttersaure abbauende bakterien und exoenzyme. Arch Microbiol 47:167–200

    CAS  Google Scholar 

  82. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. doi:10.1002/(SICI)1097-0290(19960105)49:1%3C1::AID-BIT1%3E3.0.CO;2-P

  83. Reddy C. S. K., Ghai R., Rashmi, Kalia VC.: Polyhy-droxyalkanoates: an overview. Bioresour Technol, 87, 137–146 (2003). doi:10.1016/S0960-8524(02)00212-2

    Article  CAS  Google Scholar 

  84. Tokiwa Y, Iwamoto A, Koyama M, Kataoka N, Nishida H (1992) Biological recycling of plastics containing ester bonds. Makromol Chem Macromol Symp 57:273–279. doi:10.1002/masy.19920570125

    Article  CAS  Google Scholar 

  85. Calabia BPT, Tokiwa Y (2004) Microbial degradation of poly(d-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol Lett 26:15–19. doi:10.1023/B:BILE.0000009453.81444.51

    Article  CAS  Google Scholar 

  86. Sanchez J, Tsuchii A, Tokiwa Y (2000) Degradation of polycaprolactone at 50 °C by a thermotolerant aspergillus sp. Biotechnol Lett 22:849–853. doi:10.1023/a:1005603112688

    Article  CAS  Google Scholar 

  87. Tseng M, Hoang K-C, Yang M-K, Yang S-F, Chu W (2007) Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation 18:579–583. doi:10.1007/s10532-006-9089-z

    Article  CAS  Google Scholar 

  88. Koyama N, Doi Y (1997) Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer 38:1589–1593. doi:10.1016/S0032-3861(96)00685-4

    Article  CAS  Google Scholar 

  89. Johnstone B (1990) A throw away answer. Far Eastern Economic Review 147:62–63

    Google Scholar 

  90. Blandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(β- hydroxyalkanoates)as natural, biocompatible, and biodegradable poly-esters. Adv Biochem Eng Biotechnol 41:77–93

    Google Scholar 

  91. Rizk S, Connelly DW, Bernasconi M, Carter AJ, Martin DP, Williams SF (2013) Injection molding of poly-4-hydroxybutyrate. U.S. patent 20130309166, USA

  92. Misra SK, Ohashi F, Valappil SP, Knowles JC, Roy I, Silva SRP, Salih V, Boccaccini AR (2010) Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6:735–742. doi:10.1016/j.actbio.2009.09.023

    Article  CAS  Google Scholar 

  93. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571. doi:10.1016/j.polymertesting.2005.02.008

    Article  CAS  Google Scholar 

  94. Miguel O, MJ F-B, JJ I (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (PHB). J Appl Polym Sci 64:1849–1859. doi:10.1002/(sici)1097–4628(19970531)64:9%3C1849::aid-app22%3E3.0.co;2-r

  95. Chen G-Q (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125:29–45. doi:10.1007/10_2010_89

    CAS  Google Scholar 

  96. Kosior E, Messias R, Fowler P (2006) Lightweight com-postable packaging: literature review. The Waste and Resources Action Programme, Banbury

    Google Scholar 

  97. Bhatt R, Patel K, Trivedi U (2011) Biodegradation of poly (3-hydroxyalkanoates). In: SK S, Mudhoo A (eds) A handbook of applied bio-polymer technology: Synthesis, degradation and applications. The Royal Society of Chemistry Publishing, London, pp. 311–331. doi:10.1039/9781849733458-00311

    Chapter  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from the DST Nanomission and to the Director and Principal of RBS College, Agra for facilities .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Singh Kushwah.

Additional information

This article has been retracted by the Editor-in-Chief per the Committee on Publication Ethics (COPE) guidelines on plagiarism. The article shows extensive overlap with the following source: Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging

E. Bugnicourt, P. Cinelli, A. Lazzeri, V. Alvarez eXPRESS Polymer Letters Vol. 8, No. 11 (2014) 791-8089 DOI: 10.3144.expresspolymlett.2014.82

An erratum to this article is available at http://dx.doi.org/10.1007/s10965-017-1260-1.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, B.S., Kushwah, A.V.S. & Singh, V. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use. J Polym Res 23, 153 (2016). https://doi.org/10.1007/s10965-016-0988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0988-3

Keywords

Navigation