Skip to main content
Log in

Facile elaboration of polymethylmethacrylate / polyurethane interpenetrating networks using Diels-Alder reactions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermo-reversible PMMA/PU interpenetrating polymer networks were successfully prepared by Diels-Alder (DA) reaction using a furan-functionalized polymethyl methacrylate, furan-functionalized polyurethane and a maleimide-based coupling agent. First, homo-networks were synthesized and characterized in order to predict the characteristics of the corresponding interpenetrating network. Polyurethane networks were confirmed to be reversible with a temperature of retro-Diels-Alder varying from 135 °C to 144 °C depending on the cross-linking density. PMMA/PU blends are completely immiscible as shown by the presence of two Tgs corresponding to the two phases in DSC results. Due to the presence of supramolecular interactions, no phase separation was observed in the simultaneously cross-linked PMMA/PU networks. Thermal behavior and de-cross-linking of the IPNs were studied by DSC, solubility tests and rheology. Swelling tests allowed the evaluation of the networks density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poomali, Siddaramaiah, Suresha B, Lee J-H (2008) Mechanical and three-body abrasive wear behaviour of PMMA/TPU blends. Mater Sci Eng, A 492:486–490

    Article  Google Scholar 

  2. Patrício PSO, De Sales JA, Silva GG, Windmöller D, Machado JC (2006) Effect of blend composition on microstructure, morphology, and gas permeability in PU/PMMA blends. J Membr Sci 271:177–185

    Article  Google Scholar 

  3. Patrício PSO, Silva GG, Machado JC (2007) Free volume properties of thermoplastic polyurethane/polymethylmethacrylate blends: evidence of interchain interaction. J Appl Polym Sci 105:641–646

    Article  Google Scholar 

  4. De Sales JA, Patrício PSO, Machado JC, Silva GG, Windmöller D (2008) Systematic investigation of the effects of temperature and pressure on gas transport through polyurethane/poly(methylmethacrylate) phase-separated blends. J Membr Sci 310:129–140

    Article  Google Scholar 

  5. Lipatov Y, Kosyanchuk L, Nesterov A (2002) Phase separation in blends of linear polymers formed IN SITU according to different mechanisms. Polym Int 51:772–780

    Article  CAS  Google Scholar 

  6. Lipatov YS, Kosyanchuk LF, Yarovaya NV (2006) Effect of the interface with solid on the interfacial region in the blends of linear polymers formed in situ. J Appl Polym Sci 102:4646–4651

    Article  CAS  Google Scholar 

  7. Shumskii VF, Kosyanchuk LF, Getmanchuk IP, Babich OV, Antonenko OI (2011) Rheology and morphology of linear polyurethane and poly(methyl methacrylate) blends formed in situ. Polym Sci Ser A+ 53:955–962

    Article  CAS  Google Scholar 

  8. Thomas S, Boudenne A, Ibos L, Candau Y (2011) Physical, thermophysical and interfacial properties of multiphase polymer systems: state of the art, new challenges and opportunities. In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems. Wiley, Chichester, pp 1–12

    Google Scholar 

  9. Vuillequez A, Moreau J, Garda MR, Youssef B, Saiter JM (2008) Polyurethane methacrylate/silicone interpenetrating polymer networks synthesis, thermal and mechanical properties. J Polym Res 15:89–96

    Article  CAS  Google Scholar 

  10. Utracki LA (2002) Polymer blends handbook. Boston: Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  11. Xiao HX, Frisch KC, Frisch HL (1983) Interpenetrating polymer networks from polyurethanes and methacrylate polymers. I. Effect of molecular weight of polyols and NCO/OH ratio of urethane prepolymers on properties and morphology of IPNs. J Polym Sci Polym Chem Ed 21:2547–2557

    Article  CAS  Google Scholar 

  12. Jehl D, Widmaier JM, Meyer GC (1983) The transparency of polyurethane-poly(methyl methacrylate) interpenetrating and semi-interpenetrating polymer networks. Eur Polym J 19:597–600

    Article  CAS  Google Scholar 

  13. Hermant I, Damyanidu M, Meyer GC (1983) Transition behaviour of polyurethane-poly(methyl methacrylate) interpenetrating polymer networks. Polymer 24:1419–1424

    Article  CAS  Google Scholar 

  14. Jin SR, Widmaier JM, Meyer GC (1988) Kinetics of formation of polyurethane-poly(methyl methacrylate) interpenetrating polymer networks: 2. Synthesis of the rigid network in the presence of the elastomeric network. Polymer 29:346–350

    Article  CAS  Google Scholar 

  15. Roha M, Wang B (1992) The effects of functional azo initiator on PMMA and polyurethane IPN systems. I: synthesis characterization, and thermal effects. J Appl Polym Sci 45:1367–1382

    Article  CAS  Google Scholar 

  16. Akay M, Rollins SN (1993) Polyurethane-poly(methyl methacrylate) interpenetrating polymer networks. Polymer 34:1865–1873

    Article  CAS  Google Scholar 

  17. Mishra V, Du Prez FE, Gosen E, Goethals EJ, Sperling LH (1995) Simultaneous interpenetrating networks of a polyurethane and poly(methyl methacrylate). I. Metastable phase diagrams. J Appl Polym Sci 58:331–346

    Article  CAS  Google Scholar 

  18. Widmaier J, Nilly A, Chenal J, Mathis A (2005) Dependence of the phase separation process on the relative onset of network formation in simultaneous interpenetrating polymer networks. Polymer 46:3318–3322

    Article  CAS  Google Scholar 

  19. Kim SC, Klempner D, Frisch KS, Radigan W, Frisch HL (1976) Polyurethane interpenetrating polymer networks. I. Synthesis and morphology of polyurethane-poly(methyl methacrylate) interpenetrating polymer networks. Macromolecules 9:258–263

    Article  CAS  Google Scholar 

  20. Siddaramaiah, Mallu P, Roopa S, Somashekarappa H, Somashekar R (2005) Studies on physico-mechanical and optical properties, and WAXS of castor oil based polyurethane/polyacrylates interpenetrating polymer networks. J Appl Polym Sci 95:764–773

    Article  CAS  Google Scholar 

  21. Kong X, Narine SS (2008) Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate). Biomacromolecules 9:1424–1433

    Article  CAS  Google Scholar 

  22. Kong X, Narine SS (2008) Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9:2221–2229

    Article  CAS  Google Scholar 

  23. Marref M, Mignard N, Jegat C, Taha M, Belbachir M, Meghabar R (2013) Epoxy-amine based thermoresponsive networks designed by Diels–Alder reactions. Polym Int 62:87–98

    Article  CAS  Google Scholar 

  24. Mallek H, Jegat C, Mignard N, Abid M, Abid S, Taha M (2013) Reversibly crosslinked self-healing PCL-based networks. J Appl Polym Sci 129(3):954–964 doi:10.1002/app.38595

    Google Scholar 

  25. Okhay N, Taha M, Mignard N, Jegat C. (2013) PMMA thermoreversible networks by Diels–Alder reaction. React Funct Polym 16(5):475–487 doi:10.1016/j.reactfunctpolym.2013.02.006

    Google Scholar 

  26. Okhay N, Mignard N, Jegat C, Taha M (2013) Diels–Alder thermoresponsive networks based on high maleimide-functionalized urethane prepolymers. Des Monomers Polym 16(5):475–487 doi:10.1080/15685551.2012.747166

    Google Scholar 

  27. Laita H, Boufi S, Gandini A (1997) The application of the Diels-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. Eur Polym J 33:1203–1211

    Article  CAS  Google Scholar 

  28. Goiti E, Huglin MB, Rego JM (2003) Thermal breakdown by the retro Diels–Alder reaction of crosslinking in poly[styrene-CO-(furfuryl methacrylate)]. Macromol Rapid Commun 24:692–696

    Article  CAS  Google Scholar 

  29. Goiti E, Huglin MB, Rego JM (2004) Some properties of networks produced by the Diels–Alder reaction between poly(styrene-co-furfuryl methacrylate) and bismaleimide. Eur Polym J 40:219–226

    Article  CAS  Google Scholar 

  30. Kavitha AA, Singha NK (2007) Atom-transfer radical copolymerization of Furfuryl Methacrylate (FMA) and Methyl Methacrylate (MMA): a thermally-amendable copolymer. Macromol Chem Phys 208:2569–2577

    Article  CAS  Google Scholar 

  31. Kavitha AA, Singha NK (2009) “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl Mater Interfaces 1:1427–1436

    Article  CAS  Google Scholar 

  32. Gaina V, Ursache O, Gaina C, Buruiana E (2012) Novel thermally-reversible epoxy-urethane networks. Des Monomers Polym 15:63–73

    Article  CAS  Google Scholar 

  33. Gaina C, Ursache O, Gaina V, Varganici D (2013) Thermally reversible cross-linked poly(ether- urethanes). Express Polym Lett 7:636–650

    Article  CAS  Google Scholar 

  34. Imai Y, Itoh H, Naka K, Chujo Y (2000) Thermally reversible IPN organic–inorganic polymer hybrids utilizing the Diels–Alder reaction. Macromolecules 33:4343–4346

    Article  CAS  Google Scholar 

  35. Macosko CW, Miller DR (1976) A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9:199–206

    Article  CAS  Google Scholar 

  36. Jegat C, Mignard N (2008) Effect of the polymer matrix on the thermal behaviour of a furan-maleimide type adduct in the molten state. Polym Bull 60:799–808

    Article  CAS  Google Scholar 

  37. Flory PJ (1953) Principles of polymer chemistry. Cornell University, Ithaca, NY

    Google Scholar 

  38. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medecine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  39. Ranjha NM, Ayoub G, Naseem S, Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21:2805–2816

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Taha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mignard, N., Okhay, N., Jegat, C. et al. Facile elaboration of polymethylmethacrylate / polyurethane interpenetrating networks using Diels-Alder reactions. J Polym Res 20, 233 (2013). https://doi.org/10.1007/s10965-013-0233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0233-2

Keywords

Navigation