Skip to main content

Advertisement

Log in

Piezoresistive effect in spin-coated polyaniline thin films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymeric materials have been replacing other materials in various applications, from structural to electronic components. In particular, since the discovery of conducting polymers, the use of these materials is growing up in the manufacture of electronic components, such as organic light-emitting diodes, organic electrodes, energy storage devices and artificial muscles, among others. On the other hand, examples of sensors of conductive polymers based on the piezoresistive effect, with large potential for applications, are not sufficiently investigated. This work reports on the piezoresistive effect of an intrinsically conductive polymer, polyaniline, which was prepared in the form of thin films by spin coating on polyethylene terephthalate substrates. The relationship between electrical response and mechanical solicitations is presented for different preparation conditions. The values of the gauge factor ranges from 10 to 22 for different samples and demonstrates the viability of these materials as piezoresistive sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chandrasekhar P (1999) Conducting polymers - fundamentals and applications: a practical approach. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  2. Osada Y, de Rossi DE (2000) Polymer sensors and actuators. Springer, Germany

    Google Scholar 

  3. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105:8475–8491

    Article  CAS  Google Scholar 

  4. Bekri-Abbes I, Srasra E (2011) Investigation of structure and conductivity properties of polyaniline synthesized by solid-solid reaction. J Polymer Res 18:659–665

    Article  CAS  Google Scholar 

  5. Singh A, Singh NP, Singh P, Singh RA (2011) Synthesis and characterization of conducting polymer composites based on polyaniline-polyethylene glycol-zinc sulfide system. J Polymer Res 18:67–77

    Article  CAS  Google Scholar 

  6. Jang J, Ha J, Kim K (2008) Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer. Thin Solid Films 516:3152–3156

    Article  CAS  Google Scholar 

  7. Fehse K, Schwartz G, Walzer K, Leo K (2007) Combination of a polyaniline anode and doped charge transport layers for high-efficiency organic light emitting diodes. J Appl Phys 101:124509

    Article  Google Scholar 

  8. Ebrahim SM (2009) Fabrication of Schottky diode based on Zn electrode and polyaniline doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. J Polymer Res 16:481–487

    Article  CAS  Google Scholar 

  9. Gupta RK, Singh RA (2004) Junction properties of Schottky diode based on composite organic semiconductors: polyaniline-polystyrene system. J Polymer Res 11:269–273

    Article  CAS  Google Scholar 

  10. Huang LM, Chen CH, Wen TC (2006) Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochim Acta 51:5858–5863

    Article  CAS  Google Scholar 

  11. Jang J, Ha J, Cho J (2007) Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv Mater 19:1772–1775

    Article  CAS  Google Scholar 

  12. Zhang L, Peng H, Kilmartin PA, Soeller C (2007) Travas-Sejdic, polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis 19:870–875

    Article  CAS  Google Scholar 

  13. Malta M, Torresi RM (2005) Electrochemical and kinetic studies of lithium intercalation in composite nanofibers of vanadium oxide/polyaniline. Electrochim Acta 50:5009–5014

    Article  CAS  Google Scholar 

  14. Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  CAS  Google Scholar 

  15. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J Power Sources 163:1105–1109

    Article  CAS  Google Scholar 

  16. Park JK, Kwon OP, Choi EY, Jung CK, Lee SH (2010) Enhanced electrical conductivity of polyaniline film by a low magnetic field. Synth Met 160:728–731

    Article  CAS  Google Scholar 

  17. Latessaa G, Brunettia F, Realea A, Saggioa G, Di Carloa A (2009) Piezoresistive behaviour of flexible PEDOT:PSS based sensors. Sensor Actuator B Chem 139:304–309

    Article  Google Scholar 

  18. Paleo J, van Hattum FWJ, Pereira J, Rocha JG, Silva J, Sencadas V, Lanceros-Méndez S (2010) The piezoresistive effect in polypropylene - carbon nanofiber composites obtained by shear extrusion. Smart Mater Struct 19:065013

    Article  Google Scholar 

  19. Lillemose M, Spieser M, Christiansen NO, Christensen A, Boisen A (2008) Intrinsically conductive polymer thin film piezoresistors. Microelectron Eng 85:969–971

    Article  CAS  Google Scholar 

  20. McCall RP, Scherr EM, MacDiarmid AG, Epstein AJ (1994) Anisotropic optical propertiesof an oriented-emeraldine-base polymer and an emeraldine-hydrochloride-salt polymer. Phys Rev B 50:5094–5100

    Article  CAS  Google Scholar 

  21. Mateiu R, Lillemose M, Hansen TS, Boisen A, Geschke O (2007) Reliability of poly 3,4-ethylenedioxythiophene strain gauge. Microelectron Eng 84:1270–1273

    Article  CAS  Google Scholar 

  22. Lang U, Rust P, Schoberle B, Dual J (2009) Piezoresistive properties of PEDOT:PSS. Microelectron Eng 86:330–334

    Article  CAS  Google Scholar 

  23. Giedd RE, Wang Y, Moss MG, Kaufmann J, Brewer TL (1996) "Homogeneously conductive polymer films as strain gauges," 5,505,093, April 09

  24. De Rossi D, Santa AD, Mazzoldi A (1999) Dressware: wearable hardware. Mater Sci Eng C 7:31–35

    Article  Google Scholar 

  25. Wu J, Zhou D, Too CO, Wallace GG (2005) Conducting polymer coated lycra. Synth Met 155:698–701

    Article  CAS  Google Scholar 

  26. Beeby S, Ensell G, Kraft M, White N (2004) MEMS mechanical sensors. Artech House, Boston

    Google Scholar 

  27. Maluf N, Williams K (2004) An introduction to microelectromechanical systems engineering, 2nd edn. Artech House, Boston

    Google Scholar 

  28. Schwizer J, Mayer M, Brand O (2005) Force sensors for microelectronic packaging applications. Springer, New York

    Google Scholar 

  29. Newnham RE (2005) Properties of materials: anisotropy symmetry structure. Oxford University Press Inc., New York

    Google Scholar 

  30. Papakostas TV, White NM (2000) Influence of substrate on the gauge factor of polymer thick-film resistors. J Phys D Appl Phys 33:73–75

    Article  Google Scholar 

  31. Chung DDL (2001) Applied materials science: applications of engineering materials in structural electronics thermal and other industries, chapter 5, CRC Press LLC

  32. Han D-H, Park Su-Moon (2004) Electrochemistry of conductive polymers. 32. Nanoscopic examination of conductivities of polyaniline films. J Phys Chem B 108:13921–13927

    Article  CAS  Google Scholar 

  33. Yeager J, Hrusch-Tupta MA. Low level measurements - precision DC current, Voltage and Resistance Measurements, 5th ed.: Keithley

  34. Wang ZH, Scherr EM, MacDiarmid AG, Epstein AJ (1992) Transport and EPR studies of polyaniline: a quasi-one-dimensional conductor with three-dimensional “metallic” states. Phys Rev B 45:4190–4202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds through the "Programa Operacional Factores de Competitividade – COMPETE" and by national funds by FCT- Fundação para a Ciência e a Tecnologia, project references PTDC/CTM/69316/2006, PTDC/CTM-NAN/112574/2009, and NANO/NMed-SD/0156/2007. J.N.P, A.F. and J. G. R. thank the FCT for Grants SFRH/BD/66930/2009, SFRH/BD/69796/2010 and SFRH/BSAB/1014/2010, respectively. The authors also than the support of the COST Action MP1003, 2010: The ‘European Scientific Network for Artificial Muscles’ (ESNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J.N., Vieira, P., Ferreira, A. et al. Piezoresistive effect in spin-coated polyaniline thin films. J Polym Res 19, 9815 (2012). https://doi.org/10.1007/s10965-011-9815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9815-z

Keywords

Navigation