Skip to main content
Log in

Effective Shape Optimization of Laplace Eigenvalue Problems Using Domain Expressions of Eulerian Derivatives

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider to solve numerically the shape optimization models with Dirichlet Laplace eigenvalues. Both volume-constrained and volume unconstrained formulations of the model problems are presented. Different from the literature using boundary-type Eulerian derivatives in shape gradient descent methods, we advocate to use the more general volume expressions of Eulerian derivatives. We present two shape gradient descent algorithms based on the volume expressions. Numerical examples are presented to show the more effectiveness of the algorithms than those based on the boundary expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  3. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  4. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  5. Henrot, A., Pierre, M.: Variation et Optimisation de Formes: Une Analyse Géométrique, vol. 48. Springer, Berlin (2005)

    MATH  Google Scholar 

  6. Allaire, G., Pantz, O.: Structural optimization with FreeFem++. Struct. Multidisc. Optim. 32, 173–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, C., Dong, F., Zhu, S., Kong, D., Liu, K.: New variational formulations for level set evolution without reinitialization with applications to image segmentation. J. Math. Imaging Vis. 41, 194–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, C., Zhu, S.: A semi-implicit binary level set method for source reconstruction problems. Int. J. Numer. Anal. Model. 8, 410–426 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Zhu, S., Dai, X., Liu, C.: A variational binary level-set method for elliptic shape optimization problems. Int. J. Comput. Math. 88, 3026–3045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, S., Liu, C., Wu, Q.: Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum. Comput. Methods Appl. Mech. Eng. 199, 2970–2986 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, S., Wu, Q., Liu, C.: Shape and topology optimization for elliptic boundary value problems using a piecewise constant level set method. Appl. Numer. Math. 61, 752–767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, S., Hu, X., Wu, Q.: A level set method for shape optimization in semilinear elliptic problems. J. Comput. Phys. 355, 104–120 (2018)

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  15. Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154, 235–257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT Numer. Math. 55, 459–485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal. 50, 1241–1267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bucur, D., Buttazzo G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65, Birkhäuser Boston (2005)

  19. Bucur, D.: Minimization of the \(k\)th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206, 1073–1083 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Buttazzo, G., Belhachmi, Z., Bucur, D., Sac-Epee, J.M.: Shape optimization problems for eigenvalues of elliptic operators. ZAMM Z. Angew. Math. Mech. 86, 171–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience, New York (1953)

    MATH  Google Scholar 

  22. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhauser, Basel (2006)

    MATH  Google Scholar 

  23. Allaire, G., Aubry, S., Jouve, F.: Eigenfrequency optimization in optimal design. Comput. Methods Appl. Mech. Eng. 190, 3565–3579 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10, 315–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54, 492–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osting, B., Kao, C.Y.: Minimal convex combinations of sequential Laplace–Dirichlet eigenvalues. SIAM J. Sci. Comput. 35, B731–B750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rousselet, B.: Shape design sensitivity of a membrane. J. Optim. Theory Appl. 40, 595–623 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ashbaugh, M.S., Benguria, R.: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions. Ann. Math. 135, 601–628 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 447, 397–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11201153, 11301129 and 11571115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Zhu.

Additional information

Communicated by Zenon Mróz.

Appendix A: Shape Sensitivity Analysis

Appendix A: Shape Sensitivity Analysis

Lemma A.1

(Theorem 2.5.3 [22]) Let \(\varOmega \) be an open and bounded domain. Then, the Eulerian derivative reads:

$$\begin{aligned} |\varOmega |^\prime (\varOmega ;\mathcal {V})=\int _\varOmega \mathrm{div}\ \mathcal {V}\,\mathrm{d}x. \end{aligned}$$

If, moreover, \(\varOmega \) is Lipschitz, then

$$\begin{aligned} |\varOmega |^\prime (\varOmega ;\mathcal {V})=\int _{\partial \varOmega } \mathcal {V}_n\,\mathrm{d}s. \end{aligned}$$

For a function \(u(x):\varOmega \rightarrow \mathbb {R}\) and its perturbation \(u_t(x_t):[0,\tau ]\times \mathbb {R}^d\rightarrow \mathbb {R}\), we have

Definition A.1

The material derivative of a state variable u in a direction \(\mathcal {V}\) is denoted as

$$\begin{aligned} \dot{u}(\varOmega ;\mathcal {V}):=\lim _{t\searrow 0} \frac{u(\varOmega _t)\circ T_t(\mathcal {V})(\varOmega )-u(\varOmega )}{t} \end{aligned}$$

if the limit exists.

Definition A.2

The shape derivative of u in a direction \(\mathcal {V}\) is defined by

$$\begin{aligned} u^\prime (\varOmega ;\mathcal {V}):=\dot{u}(\varOmega ;\mathcal {V})-\nabla u\cdot \mathcal {V}. \end{aligned}$$

In the following, we omit the subscript l of \(\lambda _l\) and \(u_l\) for simplicity. The following result holds (see Theorems 2.5.1 [22] and 4.2 [2]). We give a heuristic derivation for the sake of completeness.

Proposition A.1

Let \(\varOmega \) be an open bounded domain. Assume that the first Dirichlet eigenvalue \(\lambda =\lambda (\varOmega )\) is simple. Then, \(\lambda (\varOmega )\) is shape differentiable and the Eulerian derivative

$$\begin{aligned} \lambda ^\prime (\varOmega ;\mathcal {V}) = \int _\varOmega \big ( - 2\nabla u\cdot \mathrm{D}\mathcal {V}\nabla u + \mathrm{div} \mathcal {V}(|\nabla u|^2-\lambda u^2)\big )\mathrm{d}x. \end{aligned}$$
(12)

If, furthermore, \(\varOmega \) is convex or if it is of class \(C^2\), then

$$\begin{aligned} \lambda ^\prime (\varOmega ;\mathcal {V})=-\int _{\partial \varOmega } \left( \frac{\partial u}{\partial n}\right) ^2 \mathcal {V}_n\mathrm{d}s. \end{aligned}$$
(13)

Proof

We only derive (13) formally below for simplicity. The derivation of volume formulation (12) can be performed similarly. For a test function \(\phi \in H^1(\varOmega )\) with compact support \(\omega \subset \varOmega \), we have

$$\begin{aligned} \int _\omega \nabla u\cdot \nabla \phi \, \mathrm{d}x = \lambda \int _\omega u\phi \,\mathrm{d}x. \end{aligned}$$

Differentiating with respect to \(\varOmega \) implies that

$$\begin{aligned} \int _\omega \nabla u^\prime \cdot \nabla \phi \, \mathrm{d}x = \lambda ^\prime \int _\omega u\phi \mathrm{d}x+\lambda \int _\omega u^\prime \phi \mathrm{d}x, \end{aligned}$$

where \(u^\prime :=u^\prime (\varOmega ;\mathcal {V})\) and \(\lambda ^\prime :=\lambda ^\prime (\varOmega ;\mathcal {V})\). By integration by parts, we have

$$\begin{aligned} -\Delta u^\prime - \lambda u^\prime =\lambda ^\prime u\quad \mathrm{in}\ \varOmega . \end{aligned}$$
(14)

To derive the boundary condition, we have

$$\begin{aligned} \int _{\partial \varOmega } u\varphi \mathrm{d}s = 0\quad \forall \varphi \in C^\infty (\mathbb {R}^d). \end{aligned}$$

Taking the Eulerian derivative implies that

$$\begin{aligned} \int _{\partial \varOmega } \bigg [u^\prime \varphi +\bigg (\frac{\partial (u\varphi )}{\partial n}+\kappa u\varphi \bigg )\mathcal {V}_n\bigg ]\mathrm{d}s = 0\quad \forall \varphi \in C^\infty (\mathbb {R}^d), \end{aligned}$$

where \(\kappa \) denotes the mean curvature. Thus,

$$\begin{aligned} u^\prime = -\frac{\partial u}{\partial n}\mathcal {V}_n \end{aligned}$$
(15)

since \(u=0\) on \(\partial \varOmega \).

Multiplying Eq. (14) by u and integrating by parts leads to

$$\begin{aligned} \int _{\varOmega } \nabla u^\prime \cdot \nabla u\mathrm{d}x =\lambda \int _{\varOmega } u^\prime u \mathrm{d}x+\lambda ^\prime \int _{\varOmega } u^2 \mathrm{d}x. \end{aligned}$$

Multiplying the equation for u by \(u^\prime \) and integrating by parts leads to

$$\begin{aligned} \int _{\varOmega } \nabla u\cdot \nabla u^\prime \mathrm{d}x =\lambda \int _{\varOmega } u u^\prime \mathrm{d}x+\int _{\partial \varOmega }\frac{\partial u}{\partial n} u^\prime \mathrm{d}s. \end{aligned}$$

Thus, a combination of the two equations above yields that

$$\begin{aligned} \lambda ^\prime \int _{\varOmega } u^2 \mathrm{d}x = \int _{\partial \varOmega }\frac{\partial u}{\partial n} u^\prime \, \mathrm{d}s, \end{aligned}$$

from which we obtain the result after using (15) and the normalization \(\int _\varOmega u^2\,\mathrm{d}x=1\). \(\square \)

Proposition A.2

Let \(\varOmega \) be an open bounded domain. For \(J(\varOmega )=|\varOmega |\lambda (\varOmega )\), we have

$$\begin{aligned} \begin{aligned} J^\prime (\varOmega ;\mathcal {V}) = \int _\varOmega \Big [ |\varOmega |\big (- 2\nabla u\cdot \mathrm{D}\mathcal {V}\nabla u + \mathrm{div} \mathcal {V}(|\nabla u|^2-\lambda u^2)\Big )+\lambda \mathrm{div} \mathcal {V} \big ]\,\mathrm{d}x. \end{aligned} \end{aligned}$$

If, moreover, \(\varOmega \) is convex or \(C^2\), then

$$\begin{aligned} \begin{aligned} J^\prime (\varOmega ;\mathcal {V})=\int _{\partial \varOmega }\bigg [\lambda -|\varOmega |\bigg (\frac{\partial u}{\partial n}\bigg )^2 \bigg ]\mathcal {V}_n\,\mathrm{d}s. \end{aligned} \end{aligned}$$

Proof

First, we perform the product rule for Eulerian derivatives

$$\begin{aligned} J^\prime (\varOmega ;\mathcal {V})= \lambda |\varOmega |^\prime + |\varOmega |\lambda ^\prime (\varOmega ;\mathcal {V}). \end{aligned}$$

Then, we obtain (6)–(7) and (9)–(10) by combining Proposition A.1 and Lemma A.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S. Effective Shape Optimization of Laplace Eigenvalue Problems Using Domain Expressions of Eulerian Derivatives. J Optim Theory Appl 176, 17–34 (2018). https://doi.org/10.1007/s10957-017-1198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1198-9

Keywords

Mathematics Subject Classification

Navigation