Skip to main content
Log in

Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We perform a numerical optimization of the first ten nontrivial eigenvalues of the Neumann Laplacian for planar Euclidean domains. The optimization procedure is done via a gradient method, while the computation of the eigenvalues themselves is done by means of an efficient meshless numerical method which allows for the computation of the eigenvalues for large numbers of domains within a reasonable time frame. The Dirichlet problem, previously studied by Oudet using a different numerical method, is also studied and we obtain similar (but improved) results for a larger number of eigenvalues. These results reveal an underlying structure to the optimizers regarding symmetry and connectedness, for instance, but also show that there are exceptions to these preventing general results from holding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antunes, P., Freitas, P.: New bounds for the principal Dirichlet eigenvalue of planar regions. Exp. Math. 15, 333–342 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antunes, P., Freitas, P.: A numerical study of the spectral gap. J. Phys. A 5(055201) (2008) 19 pp.

    Google Scholar 

  3. Henrot, A., Oudet, E.: Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169, 73–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10, 315–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience, New York (1953)

    Google Scholar 

  6. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  7. Faber, G.: Beweis, dass unter allen homogenen membranen von gleicher flüche und gleicher spannung die kreisfürmige den tiefsten grundton gibt. Sitz. ber. bayer. Akad. Wiss., 169–172 (1923)

  8. Krahn, E.: Über eine von Rayleigh formulierte minimaleigenschaft des kreises. Math. Ann. 94, 97–100 (1924)

    Article  MathSciNet  Google Scholar 

  9. Pólya, G.: On the characteristic frequencies of a symmetric membrane. Math. Z. 63, 331–337 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krahn, E.: Über Minimaleigenshaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Dorpat. A9, 1–44 (1926)

    Google Scholar 

  11. Kornhauser, E.T., Stakgold, I.: A variational theorem for ∇2 u+λu=0 and its applications. J. Math. Phys. 31, 45–54 (1952)

    MathSciNet  MATH  Google Scholar 

  12. Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. Arch. Ration. Mech. Anal. 3, 343–356 (1954)

    MATH  Google Scholar 

  13. Weinberger, H.F.: An isoperimetric inequality for the N-dimensional free membrane problem. Arch. Ration. Mech. Anal. 5, 633–636 (1956)

    MathSciNet  MATH  Google Scholar 

  14. Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83(3), 637–662 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Bucur, D., Henrot, A.: Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. R. Soc. Lond. 456, 985–996 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 447, 397–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buttazzo, G., Dal Maso, G.: An existence result for a class of shape optimization problems. Arch. Ration. Mech. Anal. 122, 183–195 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cox, S.J.: Extremal eigenvalue problems for starlike planar domains. J. Differ. Equ. 120(1), 174–197 (1995)

    Article  MATH  Google Scholar 

  19. Poliquin, G., Roy-Fortin, G.: Wolf-Keller theorem for Neumann eigenvalues. Ann. Sci. Math. Québec (to appear)

  20. Colbois, B., El Soufi, A.: Extremal eigenvalues of the Laplacian on Euclidean domains and Riemannian manifolds (preprint)

  21. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua 2(4), 251–266 (2005)

    Google Scholar 

  23. Goldberg, D.: Genetic Algorithms. Addison Wesley, Reading (1988)

    Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer, Berlin (2005)

    MATH  Google Scholar 

  26. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 10. Springer, Berlin (1992)

    MATH  Google Scholar 

  27. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moler, C.B., Payne, L.E.: Bounds for eigenvalues and eigenfunctions of symmetric operators. SIAM J. Numer. Anal. 5, 64–70 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pólya, G.: On the eigenvalues of vibrating membranes. Proc. Lond. Math. Soc. 11, 419–433 (1961)

    Article  MATH  Google Scholar 

  30. Chen, J.T., Chen, I.L., Lee, Y.T.: Eigensolutions of multiply connected membranes using the method of fundamental solutions. Eng. Anal. Bound. Elem. 29, 166–174 (2005)

    Article  MATH  Google Scholar 

  31. Antunes, P.R.S.: Numerical calculation of eigensolutions of 3D shapes using the method of fundamental solutions. Numer. Methods Partial Differ. Equ. 27(6), 1525–1550 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

P.R.S.A. was partially supported by FCT, Portugal, through the scholarship SFRH/BPD/47595/2008 and the project PTDC/MAT/105475/2008 and by Fundação Calouste Gulbenkian through program Estímulo à Investigação 2009. Both authors were partially supported by FCT’s project PTDC/MAT/101007/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Freitas.

Additional information

Communicated by Enrique Zuazua.

Appendix

Appendix

i

λ 5

λ 6

λ 7

λ 8

a i

b i

a i

b i

a i

b i

a i

b i

0

0.55438079

 

0.540969934

 

0.555917408

 

0.52402981

 

1

0.013238729

0.0057015487

−0.0254618108

0.20040578

−0.0396571523

0.0142910591

−0.133073983

−0.237327033

2

−0.077358408

0.092876235

−0.0441431399

−0.0456353393

−0.0378443687

−0.069786321

0.0524340446

0.0850167772

3

−0.0051545105

−0.0024247559

−0.0573759273

0.023490155

−0.0159573574

0.059561064

−0.0123987019

−0.0376173185

4

0.014513074

0.080309088

−0.0106613347

−0.0482010972

−0.0563539206

0.0490047495

−0.0260590608

0.00874912734

5

−0.0060402322

0.0077267846

0.0138861761

0.000120165574

−0.00279806649

−0.00185896562

−0.00308877567

−0.00973987438

6

0.0080050385

0.0023040320

0.000823401662

−0.00116176266

0.028061714

0.00907415168

−0.00634415879

0.014659245

7

−0.00041462756

0.0055027319

0.000493117601

0.000994308524

−0.00621703077

0.00398846543

−0.00742943607

0.00144421808

8

0.011735634

−0.0056190380

0.00160548125

−0.00108261442

0.00163688539

0.00365127087

0.0144983946

0.00753703381

9

0.0039973580

0.0034615840

−0.0000526885146

0.000351429203

0.00321047409

−0.00372583508

−0.00642345426

−0.013566282

10

−0.00022151852

−0.0026638205

0.000112772803

−0.0000539188865

0.0066201419

−0.00279887602

−0.00391602052

0.0101569665

11

0.0027374112

0.00075580032

−0.000110774901

0.000119156464

−0.00362005727

0.000298194234

0.00186757844

−0.00127916948

12

−0.0017708460

−0.0030278106

−0.000109752183

−0.000168572897

−0.00258236878

−0.00312578819

0.0024586174

0.00171021319

13

0.00096320890

−0.0020044397

7.12030548×10−6

−0.0000117806279

0.00193116396

0.0000971958322

−0.00172422653

−0.00153156433

14

−0.000035727810

0.00044155670

7.24155168×10−6

−3.84022077×10−6

−0.00131702223

−0.000360018056

0.00181204829

0.00094827332

15

−0.00053585540

−0.0017723963

−4.96715037×10−6

−3.61610015×10−6

−0.00172076406

0.000688255022

−0.00166054256

−0.00127832356

16

−0.00012345948

0.00096474668

3.08139935×10−7

−2.03467268×10−7

−0.00115709151

0.000109810932

0.000431561493

0.00130351922

17

−0.0013188383

−0.00070898727

1.33654316×10−7

1.43346737×10−7

0.00149459761

0.000610453469

0.0000346589834

0.000803396577

18

0.00022774519

0.000042899804

−1.13982504×10−7

5.93369227×10−8

−0.000305459945

0.00101611823

0.00188952975

−0.00135359719

19

−0.00050075176

0.000026338167

  

−0.000427708258

−0.000303869144

−0.00221559806

−0.000232152954

20

−0.00016570749

0.00018779596

  

0.000678645943

0.000276590019

0.00103793066

0.000830350291

21

    

0.000569909436

−0.000046937353

−0.000313475612

−0.000209535319

22

    

0.0000654203457

0.0000144614045

0.000450916946

−0.000139709455

23

    

−0.000351309674

−0.000371289997

−0.000211391115

0.0001928562

24

    

0.000351733859

−0.000136480239

0.000217311751

−0.000318264501

i

λ 9

λ 10

λ 11

λ 12

a i

b i

a i

b i

a i

b i

a i

b i

0

0.550655939

 

0.5595999481423

 

0.556134818

 

0.560041023

 

1

−0.0998751448

0.0773421852

0.0138865410279

−0.008909759517606

−0.0368731391

0.0239315354

−0.0379604707

0.0121487257

2

0.0550157453

−0.0430957094

0.002833319704712

0.002227574982416

−0.0182053322

0.0378034906

0.0387729478

0.0507913179

3

0.0399594874

0.0593875966

−0.008349328761967

0.0957550910192

−0.00715126258

−0.101591534

−0.0015923326

0.00266165893

4

0.00142349384

0.0425900486

0.005723472594822

−0.002967862015974

−0.0297483526

−0.0418656294

−0.0146793258

0.0490107094

5

−0.0139749255

−0.0408617143

0.002652563387632

0.002447234406475

0.0241573412

0.011609453

0.00402780473

−0.0090959291

6

−0.00367223638

0.0134695479

−0.004599950115557

0.02627159459515

0.0164630521

−0.00243660354

0.0172020883

−0.00377988974

7

0.0082532258

0.00455014924

−0.002226983087317

0.000837603292585

−0.00634085209

0.00454033198

0.000684280074

0.00988820653

8

−0.00895830418

0.00176185763

0.00158099064617

0.00129569319721

−0.00412733089

0.0136032862

0.0176838961

0.0101877652

9

0.00783739536

0.00272856592

0.000470007408465

−0.00146767096302

−0.00119221343

−0.00583869131

−0.00650954246

−0.00231789514

10

0.00224548719

−0.00470960161

−0.00032089848269

−0.0000433152786976

−0.000348634021

0.0023618601

0.00215815089

0.000591548356

11

−0.00333457231

0.00120461234

−0.000417096748991

−0.000549411311543

−0.00458553797

−0.000155987857

0.00268858702

−0.000746677809

12

0.00200923924

0.00134340334

0.00118106640714

−0.00326484110276

0.00156859838

−0.00100931829

0.00277871992

−0.00316449624

13

−0.00128480877

−0.00273791879

0.0000474565496931

0.0000106513746558

0.00246569204

−0.000345244088

−0.00204072395

0.00161161335

14

0.000462592585

0.00386907619

−0.000325293746937

−0.000447970381423

−0.000674880003

−0.00290011162

−0.0000851755712

−0.00180079941

15

0.00220397703

−0.00328595287

−0.0000233520418177

−2.21572997176×10−6

0.000577306217

0.0013066555

0.000479952574

−0.00218761547

16

−0.00159326685

0.000960521718

0.000145484964248

0.0000270002808451

−0.000130890779

−0.000367319041

−0.00119840099

−0.00172733708

17

0.000330803919

0.000303830978

0.0000346822452809

0.0000929323504196

−0.00153045766

−0.0000950422371

0.00130704997

0.00124434852

18

−0.000225563872

−0.00129473302

−0.000323698743562

0.000580384511426

0.000111369245

0.0000164522889

−0.00102042771

−0.00100033718

19

−0.000189994632

0.000379332968

5.83949533850×10−6

−3.49905606658×10−6

0.000181076275

−0.000228614786

−0.000755371705

0.0000336785202

20

0.00114449161

0.000603512001

0.0000728114477851

0.000158698077368

0.0000332405057

−0.00075412169

−0.000423177546

0.000174586669

21

−0.00107566805

−0.000685698552

−6.75766392730×10−9

8.82905652608×10−9

0.0000453530838

0.000211630126

0.000529771728

−0.000195846058

22

  

−4.71286357457×10−9

−1.34781200234×10−9

0.000790026567

0.00042327352

−0.000711361356

0.000555750456

23

  

4.91209220912×10−9

−1.56660058965×10−9

−0.000395412526

−0.0000237025238

−0.000200059087

0.000361447102

24

  

1.34638456165×10−8

−1.42615694109×10−8

−0.000221380759

0.000184318601

6.73027374×10−6

0.000121028574

25

  

−2.01122360346×10−9

−3.63972837821×10−10

    

26

  

−5.44330996748×10−9

−6.68514460573×10−9

    

27

  

1.73465493720×10−9

−1.98827703541×10−9

    

28

  

1.26990184897×10−9

6.02497710742×10−10

    

29

  

−6.50409422882×10−10

5.20844861007×10−10

    

30

  

−4.33794173095×10−9

2.75350252810×10−9

    

i

λ 13

λ 14

λ 15

a i

b i

a i

b i

a i

b i

0

0.551503971

 

0.557612527

 

0.559420408

 

1

−0.0338396841

−0.114953381

0.0207678515

−0.0631536572

6.04658369×10−6

0.0000124733917

2

0.0303279427

−0.0574495473

0.058792891

−0.00649772139

−0.0000161762498

5.76792466×10−6

3

−0.0130257251

−0.0745641579

0.00531111557

0.0725253769

−0.00258516561

0.098348305

4

0.00554729211

0.0470925562

−0.0238412727

0.00370821936

0.0000123512599

−0.000190815291

5

−0.000623410989

0.0156226091

−0.00423481014

0.0177123045

−0.000180152753

−0.000020711265

6

0.017655584

0.0236085722

0.0103355869

0.00370104625

−0.0272911266

−0.00107299012

7

0.0157809243

0.0041362414

0.00304837882

−0.014888849

0.0000811807213

0.000119491243

8

−0.0102727122

0.00626879621

−0.00901708416

−0.00469316105

0.0000417425306

−0.000256107706

9

0.00478087159

0.0101645762

−0.00164226506

0.0112119165

0.00153912059

−0.0158989451

10

−0.00238858367

−0.00266695979

0.00355556561

0.00270396021

−0.0000614558942

−0.000447492308

11

−0.00105832356

−0.00408004353

0.000321931966

−0.00139053897

0.000866001007

0.00027348823

12

−0.000322435582

−0.00132277381

0.000904139462

−0.000968101304

−0.00316306275

−0.000317748954

13

−0.000213314175

−0.00418096453

−0.000540135261

0.00109132915

−0.000144984378

−0.0000655946379

14

0.00272342258

0.000515668982

0.00225122256

0.00138225898

0.0000138295682

0.0000408821376

15

0.00227560059

−0.00387180384

0.00168277384

−0.00245914572

0.000674764382

−0.00440846194

16

−0.00134117822

0.000421056294

−0.0020040944

−0.00149449634

0.000187045993

−0.0000389099159

17

0.00206300976

0.00168123748

−0.00133504032

0.00121246955

0.000295365946

0.000120717313

18

−0.000134937278

−0.000594329311

0.000932926429

0.000698600595

0.00201216141

0.000363000545

19

−0.000198444012

0.000832646684

0.000619420867

−0.000348513148

0.0000688156095

−0.0000196772322

20

−0.00102360784

0.0000520444273

−0.000149699453

−0.000278429144

−0.0000745226863

0.00023283672

21

−0.001672364

0.000149383067

−0.0000699271742

−5.4335581×10−6

0.000139260778

−0.000810604043

22

−0.0000358586874

0.000530041321

0.0000435046984

0.0000790199395

0.0000853310383

−0.0000589423176

23

−0.000396920563

−0.00174332362

0.000122963842

−0.0000894017094

−9.68881282×10−6

−0.0000137876809

24

−0.000877487074

0.000231158959

−0.000096357168

−0.000130817975

0.000859421574

0.000254606817

25

0.00081526229

−0.0000801225237

  

0.000192873826

0.00041027021

26

−0.0000126186682

−0.000184605499

  

−0.0000242683214

0.000159546939

27

0.000719525244

0.00045645044

  

−0.0000380641833

0.0000291315401

28

0.0000402334404

0.0000752523567

    

29

−0.000231434094

0.000612933714

    

30

0.000248027728

0.000375568407

    

i

μ 3

μ 4

μ 5

a i

b i

a i

b i

a i

b i

0

0.549954737

 

0.554098864

 

0.560519732

 

1

−0.000578925467

0.122335927

0.00784197933

0.00418017833

2.70058702×10−6

−7.43462854×10−7

2

0.0268566607

0.000218577103

−0.0567066976

−0.085617596

−2.82208992×10−6

0.0891304954

3

0.000496273706

−0.119430145

0.0000940623335

0.00223713046

−2.99864606×10−6

3.78746736×10−6

4

0.0393289299

0.000347273779

−0.0418915905

0.1008615

0.0176267143

−1.07708404×10−6

5

0.000137109558

0.0106100598

−0.00119189439

0.000890469706

2.41171388×10−6

2.88093629×10−6

6

0.00283111302

−0.000494884753

−0.000628688812

−0.000171550392

−3.02951992×10−7

0.000287510816

7

0.000178562726

0.00858917695

0.000993259124

0.000551021581

−1.89820251×10−6

1.35592844×10−6

8

−0.0044258337

−0.000117746227

0.00172088603

0.00189395041

−0.0000537048883

−3.03014709×10−7

9

−0.000153351823

−0.00245969402

0.0000211410532

0.000121738707

1.11865906×10−8

1.5845649×10−8

10

0.000262693154

0.00011309051

0.0000861800292

−0.000464999058

−7.95639895×10−10

1.16121376×10−8

11

0.0000273742248

−0.000637837391

−2.92218066×10−6

3.16893374×10−6

−9.58692935×10−9

7.27334368×10−9

12

0.000277665815

0.000118370769

0.000038215104

−1.87411565×10−6

−1.01220124×10−8

−2.3451735×10−10

13

4.89182689×10−7

−1.22498345×10−6

5.19443562×10−7

−6.26013908×10−6

−8.39746687×10−10

−1.23147374×10−9

14

−7.17958187×10−7

−5.83425372×10−7

−2.72365156×10−8

4.12250759×10−8

  

15

9.84379966×10−7

−1.28371466×10−6

−3.8438191×10−7

1.2958845×10−7

  

16

1.0499127×10−6

3.93269146×10−7

−1.20147834×10−7

−8.02744085×10−8

  

17

−5.21573808×10−8

1.3948447×10−7

    

18

4.29340708×10−7

−7.32876443×10−8

    

i

μ 6

μ 7

μ 8

a i

b i

a i

b i

a i

b i

0

0.544423006

 

0.561303447

 

0.563472327

 

1

0.154549722

0.074592044

−0.0296105015

0.00929288081

−0.0135281387

−0.0125695822

2

−0.0238297433

−0.0134221544

0.00292713876

0.000461527094

−0.00100221576

0.000360922605

3

0.0465889872

0.0735117289

−0.00581168985

0.00629595371

−0.000758596993

−0.00183183995

4

0.00798942924

0.0640407746

0.000521812939

0.000923350669

0.0108989574

−0.00829182165

5

−0.00631739792

−0.018003381

−0.00154983934

0.0094039286

−0.000820543007

−0.000308128932

6

−0.0137357316

0.0204107763

−0.00501494717

0.0700259021

0.000874631017

−0.00117284521

7

−0.0216354835

0.0151204116

−0.00243458512

−0.012367072

−0.00888157387

−0.00150292924

8

−0.00906075347

0.00115927695

0.00113180953

0.000671399157

0.000674798064

0.000729850385

9

−0.008733436

0.000345375567

0.00256031464

0.00298770473

−0.0000147809707

0.000267662456

10

0.00229280469

−0.00114925445

0.00279992286

−0.000175531225

−0.00054844287

−0.000335737527

11

0.00315240014

0.00284257911

0.00354013286

0.00287589877

0.00119052948

−0.000881687946

12

−0.00163249012

0.00100770067

0.0137409909

0.000577609805

0.000195303616

0.0000981460855

13

−0.0000192004444

0.00315093287

−0.0052461102

0.00145050804

0.000174689747

0.000173203814

14

−0.00187726514

0.0026655375

0.00146193752

−0.0000610893421

−0.00126202335

−0.000458787859

15

−0.00216069733

0.00147185804

0.00022791128

−0.0021485341

0.0000822630097

0.000478005166

16

−0.00226807794

0.00129214283

−0.0000970608746

0.000143359763

1.09927346×10−6

0.0000300340072

17

−0.00096819417

−0.000488799805

0.000144426536

−0.00032671668

−9.92661542×10−6

−2.66527939×10−6

18

−0.000118656413

−0.00018293087

0.0000407362083

−0.000176673501

0.0000515695341

−9.26540504×10−6

19

−0.000192492127

0.0000493303754

−0.0000273822824

0.000171666015

−7.89252523×10−6

−6.26345568×10−6

20

0.000263760246

0.000350170164

0.0000432423872

−0.000127265244

2.41000428×10−6

−2.3749484×10−6

21

1.16558991×10−6

4.96712883×10−6

  

−5.85227252×10−6

−6.79087762×10−6

22

−1.63244689×10−6

6.47331955×10−6

  

−3.33045158×10−6

7.49271783×10−6

23

−3.4729084×10−6

5.95322586×10−6

  

1.88193258×10−6

−3.98305519×10−7

24

−4.96630548×10−6

1.72968518×10−6

  

−2.36175431×10−18

2.51061885×10−7

25

5.12755036×10−8

2.14945715×10−7

    

26

−3.07397112×10−8

2.19743806×10−7

    

27

−6.99669598×10−8

1.77349366×10−7

    

i

μ 9

μ 10

a i

b i

a i

b i

0

0.546107642

 

0.557982648

 

1

0.132184562

0.0832860664

−0.0107226947

−0.00560550488

2

−0.0422564242

−0.081406976

−0.00243459937

0.00272185071

3

−0.00288494405

0.0494657212

−0.106247514

−0.0216645017

4

−0.00990364257

0.0141660798

0.00371146609

−0.00230659129

5

0.044032033

−0.02072678

0.0000381990189

0.00245899729

6

0.0162253823

0.00284538146

0.0299771487

0.017040206

7

−0.00684008357

−0.00453911102

−0.0033437228

0.00348204544

8

0.0113448501

0.0332865286

0.000299992113

−0.00319195161

9

−0.00329408749

0.0181081652

−0.0217413819

−0.0152507074

10

−0.001807493

0.000642929037

0.000428329649

0.00273289835

11

−0.00649512127

0.00171952483

0.000587136389

−0.0000355914864

12

0.00379245547

0.00021410323

0.0000998793688

−0.000710946153

13

−0.000881363531

−0.00148150927

0.00168461816

−0.00141128391

14

−0.00288415573

−0.0106440172

−0.000916519918

0.000996942438

15

0.000669513161

−0.0000464470469

0.00151666691

0.00459881141

16

0.00163822411

−0.000542216743

−0.00150433091

0.000444760945

17

0.0087891035

−0.00109922112

0.00109118785

−0.000873399337

18

0.000888529246

0.000976724264

−0.00103745245

−0.00391413716

19

0.000561401536

0.00191176013

0.000136745573

0.000451314701

20

0.000172718181

0.00178646218

−0.000328686271

0.0000923832995

21

−0.0000607718052

−0.00115913985

0.0000607676685

0.000247990695

22

−0.00224226772

0.000812563001

0.000109497006

−0.0000372289029

23

−0.0026768554

0.0000114857432

−0.0000756102401

0.0000118837984

24

0.00107005965

−0.000253133326

−0.000067632927

0.000143418041

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunes, P.R.S., Freitas, P. Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians. J Optim Theory Appl 154, 235–257 (2012). https://doi.org/10.1007/s10957-011-9983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9983-3

Keywords

Navigation