Skip to main content
Log in

Minimization of the k-th eigenvalue of the Dirichlet Laplacian

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For every \({k \in \mathbb{N}}\), we prove the existence of a quasi-open set minimizing the k-th eigenvalue of the Dirichlet Laplacian among all sets of prescribed Lebesgue measure. Moreover, we prove that every minimizer is bounded and has a finite perimeter. The key point is the observation that such quasi-open sets are shape subsolutions for an energy minimizing free boundary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt H.W., Caffarelli L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Briançon T., Hayouni M., Pierre M.: Lipschitz continuity of state functions in some optimal shaping. Calc. Var. Partial Differ. Equ. 23, 13–32 (2005)

    Article  MATH  Google Scholar 

  3. Bucur D.: Uniform concentration-compactness for Sobolev spaces on variable domains. J. Differ. Equ. 162, 427–450 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bucur D.: Regularity of optimal convex shapes. J. Convex Anal. 10, 501–516 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 65, Birkhäuser, Boston, 2005

  6. Bucur D., Henrot A.: Minimization of the third eigenvalue of the Dirichlet Laplacian. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, 985–996 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Buttazzo G., Dal Maso G.: An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122, 183–195 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Caffarelli, L., Salsa, S.: A geometric approach to free boundary problems. In: Graduate Studies in Mathematics. American Mathematical Society, Providence, 2005

  9. Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge, 1990

  10. Dunford, N., Schwartz, J.T.: Linear operators. Part II: Spectral theory. In: Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle. Wiley, New York, 1963

  11. Hayouni M., Pierre M.: Domain continuity for an elliptic operator of fourth order. Commun. Contemp. Math. 4, 1–14 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006

  13. Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. CVGMT (2011) (Preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucur, D. Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch Rational Mech Anal 206, 1073–1083 (2012). https://doi.org/10.1007/s00205-012-0561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0561-0

Keywords

Navigation