Skip to main content
Log in

A Matrix-Valued Kuramoto Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Kuramoto model is an important model for studying the onset of phase-locking in an ensemble of nonlinearly coupled phase oscillators. Each oscillator has a natural frequency (often taken to be random) and interacts with the other oscillators through the phase difference. It is known that, as the coupling strength is increased, there is a bifurcation in which the incoherent state becomes unstable and a stable phase-locked solution is born. Beginning with the work of Lohe there have been a number of paper that have generalized the Kuramoto model for phase-locking to a non-commuting setting. Here we propose and analyze another such model. We consider a collection of matrix-valued variables that evolve in such a way as to try to align their eigenvector frames. The phase-locked state is one where the eigenframes all align, and thus the matrices all commute. We analyze the stability of the equal frequency phase-locked state and show that it is stable. We also analyze (for the case of symmetric matrices) a dynamic analog of the twist states arising in the standard Kuramoto model, and show that these twist states are dynamically unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Hadamard product is the seldom-used entrywise product: \((\mathbf{G} \circ \mathbf{H})_{ij} = \mathbf{G}_{ij} \mathbf{H}_{ij}\)

References

  1. Bronski, J.C., He, Y., Li, X., Liu, Y., Sponseller, D.R., Wolbert, S.: The stability of fixed points for a Kuramoto model with Hebbian interactions. Chaos: Interdiscip. J Nonlinear Sci. 27(5), 053110 (2017)

    Article  MathSciNet  Google Scholar 

  2. Childs, L.M., Strogatz, S.H.: Stability diagram for the forced Kuramoto model. Chaos: Interdiscip. J. Nonlinear Sci. 18(4), 043128 (2008)

    Article  MathSciNet  Google Scholar 

  3. Delabays, R., Coletta, T., Jacquod, P.: Multistability of phase-locking in equal-frequency Kuramoto models on planar graphs. J. Math. Phys. 58(3), 032703 (2017). 2019/03/08

    Article  ADS  MathSciNet  Google Scholar 

  4. DeVille, L., Ermentrout, B.: Phase-locked patterns of the Kuramoto model on 3-regular graphs. Chaos: Interdiscip. J. Nonlinear Sci. 26(9), 094820 (2016)

    Article  MathSciNet  Google Scholar 

  5. DeVille, L.: Synchronization and stability for quantum Kuramoto. J. Stat. Phys. 174(1), 160–187 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ferguson, T.: Topological states in the Kuramoto model. SIAM J. Appl. Dyn. Syst. 17(1), 484–499 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ha, S.-Y., Ryoo, S.W.: On the emergence and orbital stability of phase-locked states for the Lohe model. J. Stat. Phys. 163(2), 411–439 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ha, S.-Y., Kim, D.: Emergent behavior of a second-order Lohe matrix model on the unitary group. J. Stat. Phys. 175, 904–931 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ha, S.-Y., Noh, S.E., Park, J.: Synchronization of Kuramoto oscillators with adaptive couplings. SIAM J. Appl. Dyn. Syst. 15(1), 162–194 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ha, S.-Y., Ko, D., Ryoo, S.W.: Emergent dynamics of a generalized Lohe model on some class of Lie groups. J. Stat. Phys. 168(1), 171–207 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ha, S.-Y., Ko, D., Ryoo, S.W.: On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. J. Stat. Phys. 172(5), 1427–1478 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Haynsworth, E.V.: Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra Appl. 1(1), 73–81 (1968)

    Article  MathSciNet  Google Scholar 

  14. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York (2005)

    Book  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis, vol. 2. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  16. Isakov, A., Mahadevan, L.: Synchronization in a stochastic Hebbian network of phase oscillators. arXiv preprint arXiv:1404.2328 (2014)

  17. Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. case of a phase transition in oscillator communities. J. Stat. Phys. 49(3–4), 569–605 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lohe, M.A.: Non-Abelian Kuramoto models and synchronization. J. Phys. A 42(39), 395101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43(46), 465301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lu, Z., Klein-Cardeña, K., Lee, S., Antonsen, T.M., Girvan, M., Ott, E.: Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag. Chaos: Interdiscip. J. Nonlinear Sci. 26(9), 094811 (2016)

    Article  MathSciNet  Google Scholar 

  21. Medvedev, G.S., Tang, X.: Stability of twisted states in the Kuramoto model on Cayley and random graphs. J. Nonlinear Sci. 25(6), 1169–1208 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mirollo, R.E.: Splay-phase orbits for equivariant flows on tori. SIAM J. Math. Anal. 25(4), 1176–1180 (1994)

    Article  MathSciNet  Google Scholar 

  23. Nardelli, P.H.J., Rubido, N., Wang, C., Baptista, M.S., Pomalaza-Raez, C., Cardieri, P., Latva-aho, M.: Models for the modern power grid. Eur. Phys. J. Spec. Top. 223(12), 2423–2437 (2014)

    Article  Google Scholar 

  24. Schur, J.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. Journal für die reine und angewandte Mathematik 140, 1–28 (1911)

    Article  MathSciNet  Google Scholar 

  25. Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  26. van Hemmen, J.L., Wreszinski, W.F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 72(1), 145–166 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.C.B. and S.E.S. would like to acknowledge support from the National Science Foundation under Grant NSF- DMS 1615418. T.E.C. would like to acknowledge support from Caterpillar Fellowship Grant at Bradley University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared C. Bronski.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of the Gradient Flow

Recall that a complex gradient flow takes the form

$$\begin{aligned} \frac{d \varvec{z}}{dt} = - \nabla _{\bar{\varvec{z}}} E(\varvec{z},\bar{\varvec{z}}) \end{aligned}$$

where \(E(\varvec{z},\bar{\varvec{z}})\) is the energy function and \(\bar{\varvec{z}}\) denotes the complex conjugate variable.

The energy function defined in Sect. 1,

$$\begin{aligned} E= \sum \limits _{i,j} a_{ij} {{\,\mathrm{Tr}\,}}\left( [\mathbf{M}_i,\mathbf{M}_j]^\dagger [\mathbf{M}_i,\mathbf{M}_j]\right) \end{aligned}$$

The energy E is a scalar valued function of N, \(k\times k\) matrices \(\mathbf{M}_i\) and \(\frac{\partial E}{\partial \bar{\varvec{M}}_i}\) is a \(k\times k\) matrix whose entries are the derivatives of E with respect to the corresponding entry of \(\bar{\varvec{M}}_i\). Individual components of a matrix will be denoted \(M_{i;\alpha \beta }\) with Greek indices for the matrix components. We will use the summation convention that repeated Greek indices are to be summed over, and that repeated Latin indices are to be summed over, with an additional (multiplicative) weight of \(a_{ij}\) for the \(i,j^{th}\) term.

The energy can be written as

$$\begin{aligned} E= & {} {\bar{M}}_{j;\beta \alpha } {\bar{M}}_{i;\gamma \beta } M_{i;\gamma \delta } M_{j;\delta \alpha } + {\bar{M}}_{i;\beta \alpha } {\bar{M}}_{j;\gamma \beta } M_{j;\gamma \delta } M_{i;\delta \alpha } \\&- {\bar{M}}_{j;\beta \alpha } {\bar{M}}_{i;\gamma \beta } M_{j;\gamma \delta } M_{i;\delta \alpha } -{\bar{M}}_{i;\beta \alpha } {\bar{M}}_{j;\gamma \beta } M_{i;\gamma \delta } M_{j;\delta \alpha }, \end{aligned}$$

again with the summation convention noted in the preceeding paragraph in force, and \(M_{i;\alpha ,\beta }\) denoting the \((\alpha ,\beta )\) component of \(\mathbf{M}_i\). Differentiating with respect to \({\bar{M}}_{i;\tau \phi }\) gives

$$\begin{aligned} \frac{\partial E}{\partial {\bar{M}}_{i;\tau \phi }}= & {} {\bar{M}}_{j;\phi \alpha } M_{i;\tau \gamma } M_{j;\delta \alpha } + {\bar{M}}_{j;\gamma \tau } M_{j;\gamma \delta } M_{i;\delta \phi } \\&- {\bar{M}}_{j;\phi \alpha } M_{j;\tau \delta } M_{i;\delta \alpha }-{\bar{M}}_{j;\gamma \tau } M_{i;\gamma \delta } M_{j;\delta \phi }. \end{aligned}$$

Note that upon unraveling the summation convention the derivative above can be recognized as the \(\tau ,\delta \) entry of a sum of three-fold commutators,

$$\begin{aligned} \frac{\partial E}{\partial \bar{\varvec{M}}_i} = \sum _j a_{ij} [\mathbf{M}_j^\dagger ,[M_{j},M_{i}]]. \end{aligned}$$

Thus the gradient flow for the energy E is the matrix Kuramoto flow (1.7)

$$\begin{aligned} \frac{\partial \mathbf{M}_i}{\partial t}&= -\frac{\partial E}{\partial \mathbf{M}_{i}}\\&=\sum _j a_{ij}[\mathbf{M}_j^\dagger ,[\mathbf{M}_i,\mathbf{M}_j]]. \end{aligned}$$

Appendix B: Computation of the Eigenvalues and Eigenvectors of the Linearization About a Twist State

In order to apply Eq. (2.15), for each \(\alpha \in \{0,1,2,\ldots ,N-1\}\) we need to determine the associated eigenvalue for each block of \(\mathbf{J}\), Eq. (2.12). Since the first entry of \(\mathbf{v}^{(\alpha )}\) is 1 the associated eigenvalue is given by the dot product of the first row of each block with the vector \(\mathbf{v}^{(\alpha )}\). The following properties of the discrete Fourier transform will be useful here:

$$\begin{aligned} \sum \limits _{j=0}^{n-1}e^{\frac{2 \pi ijk}{n}} \cos \left( \frac{2 \pi j}{n}\right)&= {\left\{ \begin{array}{ll} 0, &{} k \ne \pm 1 \\ \frac{n}{2}, &{} k= \pm 1 \mod n\end{array}\right. } \end{aligned}$$
(B.1)
$$\begin{aligned} \sum \limits _{j=0}^{n-1} e^{\frac{2 \pi ijk}{n}} \sin \left( \frac{2 \pi j}{n}\right)&= {\left\{ \begin{array}{ll} 0, &{} k \ne \pm 1 \\ \frac{n}{2i}, &{} k=1 \mod n \\ \frac{-n}{2i}, &{} k=-1 \mod n \end{array}\right. } \end{aligned}$$
(B.2)
$$\begin{aligned} \sum \limits _{j=0}^{n-1} e^{\frac{2 \pi ijk}{n}}&= {\left\{ \begin{array}{ll} n, &{} k=0 \mod n \\ 0, &{} k \ne 0 \mod n \end{array}\right. }. \end{aligned}$$
(B.3)

We begin by looking at the \(\frac{\partial g}{\partial \theta }\) block. The top row of this block is

$$\begin{aligned} \begin{bmatrix} 1&\cos \left( \frac{2 \pi }{N}\right)&\cos \left( \frac{4 \pi }{N}\right)&\cos \left( \frac{6 \pi }{N}\right)&\cdots&\cos \left( \frac{2 \pi (N-1)}{N}\right) \end{bmatrix}. \end{aligned}$$

To find the \(k\mathrm{{th}}\) eigenvalue \(a_k\) we take the dot product of this row with \(\mathbf{v}^{(k)}\) yielding

$$\begin{aligned} a_k&=1+ e^{2 \pi i k/N} \cos \left( \frac{2 \pi }{N}\right) + e^{4 \pi i k/N} \cos \left( \frac{4 \pi }{N}\right) +\cdots + e^{2 \pi i k (N-1)/N}\cos \left( \frac{2 \pi (N-1)}{N}\right) \\&= \sum _{j=0}^{N-1} e^{\frac{2 \pi i j k}{N}} \cos \left( \frac{2 \pi j}{N}\right) . \end{aligned}$$

By the given identities this sum is equal to N / 2 if \(k=1\) or \(k=N-1\) and is zero otherwise.

The eigenvalues for the other two blocks follow in the same way. The first row of the \(\frac{\partial g}{\partial \varDelta \lambda }\) block is given by

$$\begin{aligned} \begin{bmatrix} 0&\frac{1}{2}\sin \left( \frac{2 \pi }{N}\right)&\frac{1}{2}\sin \left( \frac{4 \pi }{N}\right)&...&\frac{1}{2}\sin \left( \frac{2 \pi (N-1)}{N}\right) \end{bmatrix}. \end{aligned}$$

It is clear that since the entries of the row are given by \(\sin \frac{2 \pi j}{N}\) the only non-zero Fourier coefficients will be \(k=1\) and \(k=N-1\) giving \(b_1 = - i N/4\) and \(b_{N-1} = i N/4\), with all of the remaining eigenvalues equal to zero.

Finally we consider the block \(\frac{\partial f}{\partial \varDelta \theta }\). The first row of this block looks like

$$\begin{aligned} \begin{bmatrix} 0&-1+ \cos \left( \frac{2 \pi }{N}\right)&-1 + \cos \left( \frac{4 \pi }{N}\right)&\cdots&-1+ \left( \cos \left( \frac{2 \pi (N-1)}{N}\right) \right) \end{bmatrix}. \end{aligned}$$

Since this term is the sum of a constant and a cosine term we will have three non-zero Fourier coefficients and thus three non-zero eigenvalues. Applying the above identities gives \(c_0 = -N, c_1 = N/2, c_{N-1}= {N}/{2}\) with all of the remaining eigenvalues zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronski, J.C., Carty, T.E. & Simpson, S.E. A Matrix-Valued Kuramoto Model. J Stat Phys 178, 595–624 (2020). https://doi.org/10.1007/s10955-019-02442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02442-w

Keywords

Mathematics Subject Classification

Navigation