Skip to main content
Log in

On the Emergence and Orbital Stability of Phase-Locked States for the Lohe Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2023

This article has been updated

Abstract

We study the emergence and orbital stability of phase-locked states of the Lohe model, which was proposed as a non-abelian generalization of the Kuramoto phase model for synchronization. Lohe introduced a first-order system of matrix-valued ordinary differential equations for quantum synchronization and numerically observed the asymptotic formation and orbital stability of phase-locked states of the Lohe model. In this paper, we provide an analytical framework to confirm Lohe’s observations of emergent phase-locked states. This extends earlier special results on lower dimensions to any finite dimension. For the construction and orbital stability of phase-locked states, we introduce Lyapunov functions to measure the ensemble diameter and dissimilarity between two Lohe flows, and using the time-evolution estimates of these Lyapunov functions, we present an admissible set of initial states, and show that an admissible initial state leads to a unique phase-locked asymptotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Aeyels, D., Rogge, J.: Stability of phase locking and existence of frequency in networks of globally coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Benedetto, D., Caglioti, E. and Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. (to appear)

  4. Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966)

    Article  ADS  Google Scholar 

  5. Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Choi, S.-H., Ha, S.-Y.: Emergent behaviors of quantum Lohe oscillators with all-to-all couplings. J. Nonlinear Sci. 25, 1257–1283 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choi, S.-H. and Ha, S.-Y.: Time-delayed interactions and synchronization of identical Lohe oscillators. Q. Appl. Math. (to appear)

  8. Choi, S.-H., Ha, S.-Y.: Large-time dynamics of the asymptotic Lohe model with a small-time delay. J. Phys. A 48, 425101 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger-Lohe model. J. Phys. A 47, 355104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM. J. App. Dyn. 13, 1417–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54, 353–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dörfler, F. and Bullo, F.: Exploring synchronization in complex oscillator networks. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 7157–7170 (2012)

  16. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ha, S.-Y., Kim, H. W. and Ryoo, S.-Y.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. (to appear)

  18. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jadbabaie, A., Motee, N. and Barahona M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004)

  20. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  21. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  22. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975)

    Article  ADS  Google Scholar 

  23. Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101–395126 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Olfati-Saber, R.: Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks. In: IEEE 45th Conference on Decision and Control (CDC), pp. 5060–5066 (2006)

  26. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)

    MATH  Google Scholar 

  30. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  31. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  ADS  Google Scholar 

  35. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    Book  MATH  Google Scholar 

  36. Xu, M., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Quantum synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014)

    Article  ADS  Google Scholar 

  37. Zhu, B., Schachenmayer, J., Xu, M., Herrera, F., Restrepo, J.G., Holland, M.J., Rey, A.M.: Synchronization of interacting dipoles. New J. Phys. 17, 083063 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of S.-Y. Ha is supported by the Samsung Science and Technology Foundation under Project Number SSTF-BA1401-03.

Author information

Authors and Affiliations

Authors

Additional information

The original online version of this article was revised: "In this article the author’s name Seung-Yeon Ryoo was incorrectly written as Sang Woo Ryoo.

Appendices

Appendix 1: Derivation of Relation (29)

In this appendix, we discuss the relation (29) that appears in the proof of Lemma 2. Recall the term \({\mathcal M}_k\):

$$\begin{aligned} \mathcal {M}_k= & {} \text{ tr }\Big [ U_k U_j^{\dagger }-U_i U_k^{\dagger } U_i U_j^{\dagger }+U_i U_k^{\dagger }-U_i U_j^{\dagger } U_k U_j^{\dagger } +U_k U_i^{\dagger }\\&\qquad -U_j U_k^{\dagger } U_j U_i^{\dagger }+U_j U_k^{\dagger }-U_j U_i^{\dagger } U_k U_i^{\dagger }\Big ]. \end{aligned}$$

Our goal is to establish the following relation:

$$\begin{aligned} \mathcal {M}_k= & {} 4\Vert U_i-U_j\Vert ^2 -\text{ tr }\Big [ (U_k-U_j)(U_k^{\dagger }-U_j^{\dagger })(U_i-U_j)(U_i^{\dagger }-U_j^{\dagger }) \\&+\, (U_k-U_i)(U_k^{\dagger }-U_i^{\dagger })(U_i-U_j)(U_i^{\dagger }-U_j^{\dagger })\Big ]. \end{aligned}$$

Rearranging the terms inside the bracket in \({\mathcal M}_k\) and using the properties \(\text{ tr }(AB) = \text{ tr }(BA)\) and \(U_j, U_i \in {\mathcal U}_d\) yields

$$\begin{aligned} {\mathcal M}_k&= \text{ tr } \Big [ (I_d - U_i U_j^{\dagger } ) U_k U_j^{\dagger } + U_i U_k^{\dagger } (I_d - U_i U_j^{\dagger }) + (I_d - U_j U_i^{\dagger }) U_k U_i^{\dagger } + U_j U_k^{\dagger } (I_d - U_j U_i^{\dagger }) \Big ] \nonumber \\&= \text{ tr } \Big [ (U_k U_j^{\dagger } + U_i U_k^{\dagger }) (I_d - U_i U_j^{\dagger } ) + (U_k U_i^{\dagger } + U_j U_k^{\dagger } )(I_d - U_j U_i^{\dagger }) \Big ] \nonumber \\&= \text{ tr } \Big [ (U_k U_j^{\dagger } + U_i U_k^{\dagger }) U_i U_i^{\dagger } (I_d - U_i U_j^{\dagger } ) + (U_k U_i^{\dagger } + U_j U_k^{\dagger } ) U_j U_j^{\dagger } (I_d - U_j U_i^{\dagger }) \Big ] \nonumber \\&= \text{ tr } \Big [ (U_k U_j^{\dagger } + U_i U_k^{\dagger }) U_i (U_i^{\dagger } - U_j^{\dagger }) - (U_k U_i^{\dagger } + U_j U_k^{\dagger } ) U_j (U_i^{\dagger } - U_j^{\dagger }) \Big ] \nonumber \\&= \text{ tr } \Big [ \underbrace{\Big ( (U_k U_j^{\dagger } U_i + U_i U_k^{\dagger } U_i - U_k U_i^{\dagger } U_j - U_j U_k^{\dagger } U_j \Big ) (U^{\dagger }_i - U_j^{\dagger })}_{{\mathcal J}_1} \Big ]. \end{aligned}$$
(47)

Note that the terms \({\mathcal J}_1\) can be simplified as follows:

$$\begin{aligned} {\mathcal J}_1&= U_k U_j^{\dagger } (U_i - U_j) (U^{\dagger }_i - U_j^{\dagger }) + U_i U_k^{\dagger } (U_i - U_j) (U^{\dagger }_i - U_j^{\dagger }) + U_i U_k^{\dagger } U_j (U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&\quad - U_k U_i^{\dagger } (U_j - U_i) (U^{\dagger }_i - U_j^{\dagger }) - U_j U_k^{\dagger } (U_j - U_i) (U^{\dagger }_i - U_j^{\dagger }) - U_j U_k^{\dagger } U_i(U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&= \Big ( U_k U_j^{\dagger } + U_i U_k^{\dagger } + U_k U_i^{\dagger } + U_j U_k^{\dagger } \Big ) (U_i - U_j)(U^{\dagger }_i - U_j^{\dagger }) + \Big ( U_i U_k^{\dagger } U_j - U_j U_k^{\dagger } U_i \Big ) (U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&=: {\mathcal J}_{11} + {\mathcal J}_{12}, \end{aligned}$$
(48)

where we used the cancellation:

$$\begin{aligned} U_k U_j^{\dagger } U_j (U^{\dagger }_i - U_j^{\dagger }) - U_k U_i^{\dagger } U_i (U^{\dagger }_i - U_j^{\dagger }) = 0. \end{aligned}$$

\(\bullet \) Case A (Estimate of \({\mathcal J}_{11}\)): For further simplification, we use the trick

$$\begin{aligned} U_k U_j^{\dagger } = (U_k U_j^{\dagger } - I_d) U_j U_j^{\dagger } + I_d = (U_k - U_j) U_j^{\dagger } + I_d \end{aligned}$$

to find

$$\begin{aligned} {\mathcal J}_{11}&= 4 (U_i - U_j)(U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&\quad + \Big ( (U_k - U_j) U_j^{\dagger } + (U_i - U_k) U_k^{\dagger } + (U_k - U_i) U_i^{\dagger } + (U_j - U_k) U_k^{\dagger } \Big ) (U_i - U_j)(U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&= 4 (U_i - U_j)(U^{\dagger }_i - U_j^{\dagger }) \nonumber \\&\quad - \Big ( (U_k - U_j) (U_k^{\dagger } - U_j^{\dagger } ) + (U_k - U_i) (U_k^{\dagger } - U_i^{\dagger } ) \Big )(U_i - U_j)(U^{\dagger }_i - U_j^{\dagger }). \end{aligned}$$
(49)

\(\bullet \) Case B (Estimate of \({\mathcal J}_{12}\)): Next, we show that

$$\begin{aligned} \text{ tr } {\mathcal J}_{12} = 0. \end{aligned}$$

By expanding \({\mathcal J}_{12}\) and using the linearity of the trace, the property \(\text{ tr }(AB) = \text{ tr }(BA)\) and the unitarity of \(U_i, U_j\), we obtain

$$\begin{aligned} \text{ tr }{\mathcal J}_{12}&= \text{ tr }(U_i U_k^{\dagger } U_j U_i^{\dagger } - U_j U_k^{\dagger } - U_i U_k^{\dagger } + U_j U_k^{\dagger } U_i U_j^{\dagger } ) \nonumber \\&= \text{ tr } \Big [ (U_i U_k^{\dagger }) (U_j U_i^{\dagger }) \Big ] - \text{ tr } ( U_j U_k^{\dagger } ) -\text{ tr }(U_i U_k^{\dagger }) + \text{ tr } \Big [ (U_j U_k^{\dagger }) ( U_i U_j^{\dagger }) \Big ] \nonumber \\&= \text{ tr } \Big [ (U_j U_i^{\dagger }) (U_i U_k^{\dagger }) \Big ]- \text{ tr } ( U_j U_k^{\dagger } ) -\text{ tr }(U_i U_k^{\dagger }) + \text{ tr } \Big [( U_i U_j^{\dagger }) (U_j U_k^{\dagger }) \Big ] \nonumber \\&= \text{ tr } (U_j U_k^{\dagger })- \text{ tr } ( U_j U_k^{\dagger } ) -\text{ tr }(U_i U_k^{\dagger }) + \text{ tr } (U_i U_k^{\dagger }) \nonumber \\&=0. \end{aligned}$$
(50)

Finally, in (47), we combine estimates (48), (49), and (50) to obtain the desired estimate. This completes the proof of (29).

Appendix 2: Derivation of Gronwall’s Inequalities in (38)

In this appendix, we provide the proof of claim (38) in the proof of Theorem 2.

For a given time t, choose indices i and j depending on t such that

$$\begin{aligned} d(U(t),\tilde{U}(t))^2=\Vert U_i(t) U_j^{\dagger }(t)-\tilde{U}_i(t) \tilde{U}_j^{\dagger }(t)\Vert ^2. \end{aligned}$$

Then, we have

$$\begin{aligned} \frac{d}{dt}d(U,\tilde{U})^2&= \frac{d}{dt} \text{ tr } \Big [ (U_i U_j^{\dagger } - {\tilde{U}}_i {\tilde{U}}_j^{\dagger }) (U_j U_i^{\dagger } - {\tilde{U}}_j {\tilde{U}}_i^{\dagger } ) \Big ] \nonumber \\&=\frac{d}{dt} \text{ tr }\Big (2I_d -U_i U_j^{\dagger }\tilde{U}_j\tilde{U}_i^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger }U_j U_i^{\dagger } \Big ) \nonumber \\&= -\text{ tr } \Big [ \frac{d}{dt} \Big ( (U_i U_j^{\dagger })(\tilde{U}_j\tilde{U}_i^{\dagger }) + (\tilde{U}_i \tilde{U}_j^{\dagger })(U_j U_i^{\dagger } ) \Big ) \Big ]. \end{aligned}$$
(51)

On the other hand, it follows from (45) that

$$\begin{aligned}&\frac{d}{dt}U_i U_j^{\dagger } = -{\mathrm i} (H_i U_i U_j^{\dagger } - U_i U_j^{\dagger }H_j) +\frac{K}{2N}\sum _{k =1}^{N} \left[ U_k U_j^{\dagger }-U_i U_k^{\dagger } U_i U_j^{\dagger }+U_iU_k^{\dagger }-U_i U_j^{\dagger } U_k U_j^{\dagger }\right] , \nonumber \\&\frac{d}{dt}{\tilde{U}}_j {\tilde{U}}_i^{\dagger } = -{\mathrm i} (H_j {\tilde{U}}_j {\tilde{U}}_i^{\dagger } - {\tilde{U}}_j {\tilde{U}}_i^{\dagger }H_i) +\frac{K}{2N}\sum _{k =1}^{N} \left[ {\tilde{U}}_k {\tilde{U}}_i^{\dagger }-{\tilde{U}}_j {\tilde{U}}_k^{\dagger } {\tilde{U}}_j {\tilde{U}}_i^{\dagger }+ {\tilde{U}}_j {\tilde{U}}_k^{\dagger }-{\tilde{U}}_j {\tilde{U}}_i^{\dagger } {\tilde{U}}_k {\tilde{U}}_i^{\dagger }\right] . \end{aligned}$$
(52)

In (51), we use relation (52) to obtain

$$\begin{aligned} \frac{d}{dt}d((U(t),\tilde{U}(t))^2 = {\bar{\mathcal L}} - \frac{K}{2N}\sum _{k=1}^{N} {\bar{\mathcal M}}_k, \end{aligned}$$
(53)

where the terms \({\bar{\mathcal L}}\) and \({\bar{\mathcal M}}_k\) are given by the following relations:

$$\begin{aligned} {\bar{\mathcal L}} ={\mathrm i} \times \text{ tr }\Big [ H_i U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } -U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } H_i + H_i \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } -\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } H_i\Big ] \end{aligned}$$
(54)

and

$$\begin{aligned} {\bar{\mathcal M}}_k&= \text{ tr }\Big [ U_k U_j^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }-U_i U_k^{\dagger } U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }+U_i U_k^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }-U_i U_j^{\dagger } U_k U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }\\&\qquad +U_i U_j^{\dagger }\tilde{U}_k \tilde{U}_i^{\dagger }-U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_k^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }+U_i U_j^{\dagger }\tilde{U}_j \tilde{U}_k^{\dagger }-U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } \tilde{U}_k \tilde{U}_i^{\dagger }\\&\qquad +\tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }- \tilde{U}_i \tilde{U}_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }+\tilde{U}_i \tilde{U}_k^{\dagger } U_j U_i^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger } \tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\\&\qquad +\tilde{U}_i \tilde{U}_j^{\dagger } U_k U_i^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_k^{\dagger } U_j U_i^{\dagger }+\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_k^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } U_k U_i^{\dagger }\Big ]. \end{aligned}$$

Lemma 4

The terms \({\bar{\mathcal M}}_k\) can be decomposed into three parts:

$$\begin{aligned} {\bar{\mathcal M}}_k = {\bar{\mathcal A}}_k+ {\bar{\mathcal B}}_k+ {\bar{\mathcal C}}_k, \end{aligned}$$
(55)

where

$$\begin{aligned} {\bar{\mathcal A}}_k&:= \text{ tr }\Big [ \tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_k (I_d -\tilde{U}_k^{\dagger } U_k U_i^{\dagger } \tilde{U}_i) (\tilde{U}_k^{\dagger }\tilde{U}_i-I_d)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j) \\&\qquad +(\tilde{U}_i^{\dagger }\tilde{U}_k-I_d) (I_d -\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \\&\qquad +(\tilde{U}_j^{\dagger }U_kU_j^{\dagger }\tilde{U}_j-I_d) (I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \\& +(I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (\tilde{U}_k^{\dagger }\tilde{U}_j-I_d) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \\&\qquad +(I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k) (\tilde{U}_k^{\dagger }\tilde{U}_i-I_d ) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i) \\&\qquad +(\tilde{U}_i^{\dagger }U_kU_i^{\dagger }\tilde{U}_i-I_d) (I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i) \\&\qquad +(\tilde{U}_j^{\dagger }\tilde{U}_k-I_d) (I_d-\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i) \\&\qquad +\tilde{U}_j^{\dagger } U_j U_k^{\dagger } \tilde{U}_k (I_d -\tilde{U}_k^{\dagger } U_k U_j^{\dagger } \tilde{U}_j) (\tilde{U}_k^{\dagger }\tilde{U}_j-I_d) (I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\Big ], \end{aligned}$$
$$\begin{aligned} {\bar{\mathcal B}}_k&:=\text{ tr } \Big [ (\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k-I_d) (I_d -\tilde{U}_k^{\dagger }U_k U_i^{\dagger }\tilde{U}_i) (I_d-\tilde{U}_i^{\dagger }U_i U_j^{\dagger }\tilde{U}_j)\\&\qquad +(\tilde{U}_j^{\dagger }U_j U_k^{\dagger }\tilde{U}_k-I_d) (I_d -\tilde{U}_k^{\dagger }U_k U_j^{\dagger }\tilde{U}_j) (I_d -\tilde{U}_j^{\dagger }U_j U_i^{\dagger }\tilde{U}_i)\Big ], \end{aligned}$$

and

$$\begin{aligned} {\bar{\mathcal C}}_k&:=2 \text{ tr }\Big [ (I_d-\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) +(I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j)\\&\qquad +(I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i) +(I_d -\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i)\Big ]. \end{aligned}$$

Proof

We verify relation (55) in several steps.

\(\bullet \) Step A: The terms in \({\bar{\mathcal M}}_k \) can be rearranged as follows:

$$\begin{aligned} {\bar{\mathcal M}}_k&=\text{ tr }\Big [-U_i U_k^{\dagger } U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } + U_i U_j^{\dagger }\tilde{U}_j \tilde{U}_k^{\dagger } - U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } \tilde{U}_k \tilde{U}_i^{\dagger }+ U_k U_j^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }\\&\qquad -U_i U_j^{\dagger } U_k U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }+U_i U_j^{\dagger }\tilde{U}_k \tilde{U}_i^{\dagger }-U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_k^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }+U_i U_k^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }\\&\qquad -\tilde{U}_i \tilde{U}_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }+\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_k^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } U_k U_i^{\dagger }+\tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\\&\qquad -\tilde{U}_i \tilde{U}_j^{\dagger } \tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }+\tilde{U}_i \tilde{U}_j^{\dagger } U_k U_i^{\dagger }-\tilde{U}_i \tilde{U}_j^{\dagger } U_j U_k^{\dagger } U_j U_i^{\dagger }+\tilde{U}_i \tilde{U}_k^{\dagger } U_j U_i^{\dagger }\Big ]. \end{aligned}$$

\(\bullet \) Step B: Using \(\text{ tr }(AB) = \text{ tr }(BA)\), it follows that

$$\begin{aligned} {\bar{\mathcal M}}_k= & {} \text{ tr }\Big [-\tilde{U}_i^{\dagger } U_i U_k^{\dagger } U_i U_j^{\dagger } \tilde{U}_j + \tilde{U}_k^{\dagger } U_i U_j^{\dagger }\tilde{U}_j - \tilde{U}_i^{\dagger } \tilde{U}_k \tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j+ \tilde{U}_i^{\dagger } U_k U_j^{\dagger }\tilde{U}_j \\&-\, U_k U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } U_i U_j^{\dagger }+\tilde{U}_k \tilde{U}_i^{\dagger } U_i U_j^{\dagger }- \tilde{U}_k^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }U_i U_j^{\dagger } \tilde{U}_j+ U_k^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }U_i\\&-\, \tilde{U}_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\tilde{U}_i +U_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j -U_k U_i^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } +\tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\\&-\, \tilde{U}_j^{\dagger } \tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\tilde{U}_i+ \tilde{U}_j^{\dagger } U_k U_i^{\dagger }\tilde{U}_i- \tilde{U}_j^{\dagger } U_j U_k^{\dagger } U_j U_i^{\dagger }\tilde{U}_i+ \tilde{U}_k^{\dagger } U_j U_i^{\dagger }\tilde{U}_i\Big ]. \end{aligned}$$

\(\bullet \) Step C: Again, we use \(\text{ tr }(UAU^{\dagger }) = \text{ tr }(A)\) for unitary U to find

$$\begin{aligned} {\bar{\mathcal M}}_k= & {} \text{ tr }\Big [-\tilde{U}_i^{\dagger } U_i U_k^{\dagger } U_i U_j^{\dagger } \tilde{U}_j + \tilde{U}_k^{\dagger } U_i U_j^{\dagger }\tilde{U}_j - \tilde{U}_i^{\dagger } \tilde{U}_k \tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j+ \tilde{U}_i^{\dagger } U_k U_j^{\dagger }\tilde{U}_j \\&-\, (\tilde{U}_j^{\dagger })U_k U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } U_i U_j^{\dagger }(\tilde{U}_j)+(\tilde{U}_j^{\dagger })\tilde{U}_k \tilde{U}_i^{\dagger } U_i U_j^{\dagger }(\tilde{U}_j)\\&-\, \tilde{U}_k^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }U_i U_j^{\dagger } \tilde{U}_j+ (\tilde{U}_j^{\dagger } U_j)U_k^{\dagger }\tilde{U}_j \tilde{U}_i^{\dagger }U_i(U_j^{\dagger }\tilde{U}_j)\\&-\, \tilde{U}_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\tilde{U}_i +(\tilde{U}_i^{\dagger } U_i)U_k^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j(U_i^{\dagger }\tilde{U}_i)\\&-\,(\tilde{U}_i^{\dagger })U_k U_i^{\dagger } \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }(\tilde{U}_i) +(\tilde{U}_i^{\dagger })\tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }(\tilde{U}_i)\\&-\, \tilde{U}_j^{\dagger } \tilde{U}_k \tilde{U}_j^{\dagger } U_j U_i^{\dagger }\tilde{U}_i+ \tilde{U}_j^{\dagger } U_k U_i^{\dagger }\tilde{U}_i- \tilde{U}_j^{\dagger } U_j U_k^{\dagger } U_j U_i^{\dagger }\tilde{U}_i+ \tilde{U}_k^{\dagger } U_j U_i^{\dagger }\tilde{U}_i\Big ], \end{aligned}$$

which factors into

$$\begin{aligned} {\bar{\mathcal M}}_k= & {} \text{ tr }\Big [(\tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_i-\tilde{U}_k^{\dagger }\tilde{U}_i)(-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)+ (\tilde{U}_i^{\dagger } \tilde{U}_k-\tilde{U}_i^{\dagger } U_k U_i^{\dagger }\tilde{U}_i)(-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)\\&+\, (\tilde{U}_j^{\dagger }U_k U_j^{\dagger } \tilde{U}_j-\tilde{U}_j^{\dagger }\tilde{U}_k)(-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)+(\tilde{U}_k^{\dagger } \tilde{U}_j-\tilde{U}_j^{\dagger } U_jU_k^{\dagger }\tilde{U}_j)(-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)\\&+\, (\tilde{U}_k^{\dagger }\tilde{U}_i-\tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_i)(-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)+ (\tilde{U}_i^{\dagger } U_k U_i^{\dagger }\tilde{U}_i-\tilde{U}_i^{\dagger } \tilde{U}_k)(-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\\&+\, (\tilde{U}_j^{\dagger }\tilde{U}_k-\tilde{U}_j^{\dagger }U_k U_j^{\dagger } \tilde{U}_j)(-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)+(\tilde{U}_j^{\dagger } U_jU_k^{\dagger }\tilde{U}_j-\tilde{U}_k^{\dagger } \tilde{U}_j)(-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\Big ].\\ \end{aligned}$$

\(\bullet \) Step D: Each of these eight summands is the product of two terms, and adding the first multiplicative terms of all eight summands results in zero. Thus, we have

$$\begin{aligned} {\bar{\mathcal M}}_k= & {} \text{ tr }\Big [(\tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_i-\tilde{U}_k^{\dagger }\tilde{U}_i)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)+ (\tilde{U}_i^{\dagger } \tilde{U}_k-\tilde{U}_i^{\dagger } U_k U_i^{\dagger }\tilde{U}_i)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)\\&+\, (\tilde{U}_j^{\dagger }U_k U_j^{\dagger } \tilde{U}_j-\tilde{U}_j^{\dagger }\tilde{U}_k)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)+(\tilde{U}_k^{\dagger } \tilde{U}_j-\tilde{U}_j^{\dagger } U_jU_k^{\dagger }\tilde{U}_j)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j)\\&+\, (\tilde{U}_k^{\dagger }\tilde{U}_i-\tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_i)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)+ (\tilde{U}_i^{\dagger } U_k U_i^{\dagger }\tilde{U}_i-\tilde{U}_i^{\dagger } \tilde{U}_k)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\\&+\, (\tilde{U}_j^{\dagger }\tilde{U}_k-\tilde{U}_j^{\dagger }U_k U_j^{\dagger } \tilde{U}_j)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)+(\tilde{U}_j^{\dagger } U_jU_k^{\dagger }\tilde{U}_j-\tilde{U}_k^{\dagger } \tilde{U}_j)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\Big ]. \end{aligned}$$

\(\bullet \) Step E: By the unitarity of \(U_i\),

$$\begin{aligned} {\bar{\mathcal M}}_k&=\text{ tr }\Big [\tilde{U}_i^{\dagger } U_i U_k^{\dagger }\tilde{U}_k(I_d-\tilde{U}_k^{\dagger }U_k U_i^{\dagger }\tilde{U}_i)\tilde{U}_k^{\dagger }\tilde{U}_i(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j) \nonumber \\& +\tilde{U}_i^{\dagger } \tilde{U}_k(I_d-\tilde{U}_k^{\dagger } U_k U_i^{\dagger }\tilde{U}_i)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger }\tilde{U}_j) \nonumber \\& +\tilde{U}_j^{\dagger }U_k U_j^{\dagger } \tilde{U}_j(I_d-\tilde{U}_j^{\dagger } U_j U_k^{\dagger }\tilde{U}_k)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j) \nonumber \\&+(I_d-\tilde{U}_j^{\dagger } U_jU_k^{\dagger }\tilde{U}_k)\tilde{U}_k^{\dagger } \tilde{U}_j(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j) \nonumber \\& +(I_d-\tilde{U}_i^{\dagger } U_iU_k^{\dagger }\tilde{U}_k)\tilde{U}_k^{\dagger } \tilde{U}_i(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i) \nonumber \\&+ \tilde{U}_i^{\dagger }U_k U_i^{\dagger } \tilde{U}_i(I_d-\tilde{U}_i^{\dagger } U_i U_k^{\dagger }\tilde{U}_k)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\nonumber \\& +\tilde{U}_j^{\dagger } \tilde{U}_k(I_d-\tilde{U}_k^{\dagger } U_k U_j^{\dagger }\tilde{U}_j)(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i) \nonumber \\&+\tilde{U}_j^{\dagger } U_j U_k^{\dagger }\tilde{U}_k(I_d-\tilde{U}_k^{\dagger }U_k U_j^{\dagger }\tilde{U}_j)\tilde{U}_k^{\dagger }\tilde{U}_j(I_d-\tilde{U}_j^{\dagger } U_j U_i^{\dagger } \tilde{U}_i)\Big ]. \end{aligned}$$
(56)

Note that there is a factor of two in \({\bar{\mathcal C}}_k\), and that matrix multiplication is distributive. In (56), the first line is the sum of the first term of \({\bar{\mathcal A}}_k\), the first term of \({\bar{\mathcal B}}_k\), and half of the first term of \({\bar{\mathcal C}}_k\). The second line is the sum of the second term of \({\bar{\mathcal A}}_k\) and half of the first term of \({\bar{\mathcal C}}_k\). The third and fourth lines are the sum of the third and fourth terms of \({\bar{\mathcal A}}_k\), respectively, with each half of the second term of \({\bar{\mathcal C}}_k\). The fifth and sixth lines are the sum of the fifth and sixth terms of \({\bar{\mathcal A}}_k\), respectively, with each half of the third term of \({\bar{\mathcal C}}_k\). The seventh line is the sum of the seventh term of \({\bar{\mathcal A}}_k\) and half of the fourth term of \({\bar{\mathcal C}}_k\). The eighth line is the sum of the eighth term of \({\bar{\mathcal A}}_k\), the second term of \({\bar{\mathcal B}}_k\), and half of the fourth term of \({\bar{\mathcal C}}_k\). \(\square \)

Proposition 2

Suppose that the coupling strength K and initial data \(U^0\) and \({\tilde{U}}^0\) satisfy

$$\begin{aligned} K>K_e>\frac{54}{17}D(H)\approx 3.1765D(H),\qquad U^0,~{\tilde{U}}^0 \in {\mathcal S}(\alpha _1). \end{aligned}$$

Then for any two Lohe flows \(\{U_i\}\) and \(\{\tilde{U}_i\}\),

$$\begin{aligned} -2K(1+3\alpha _1)d(U,\tilde{U})^2\le \frac{d}{dt}d(U,\tilde{U})^2 \le -2K(1-3\alpha _1)d(U,\tilde{U})^2. \end{aligned}$$

Proof

It follows from (53) that

$$\begin{aligned} \frac{d}{dt}d((U(t),\tilde{U}(t))^2 = {\bar{\mathcal L}} - \frac{K}{2N}\sum _{k=1}^{N} {\bar{\mathcal M}}_k. \end{aligned}$$

Below, we estimate \({\bar{\mathcal L}}\) and \({\bar{\mathcal M}}_k\) separately.

\(\bullet \) Case A (Estimate of \({\bar{\mathcal L}}\)): We use the property \(\text{ tr }(AB) = \text{ tr }(BA)\) and (54) to find

$$\begin{aligned} {\bar{\mathcal L}} = {\mathrm i} \times \Big [ \text{ tr }(H_i U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger }) - \text{ tr }(U_i U_j^{\dagger } \tilde{U}_j \tilde{U}_i^{\dagger } H_i) + \text{ tr }(H_i \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger }) - \text{ tr }( \tilde{U}_i \tilde{U}_j^{\dagger } U_j U_i^{\dagger } H_i) \Big ] = 0. \end{aligned}$$

\(\bullet \) Case B (Estimate of \({\bar{\mathcal M}}_k\)): We use the decomposition of \( {\bar{\mathcal M}}_k\) in Lemma 4 to derive the estimate

$$\begin{aligned} {\bar{\mathcal M}}_k = 4d(U, {\tilde{U}})^2 ( 1 + \text{ small } \text{ quantities }). \end{aligned}$$

\(\bullet \) Case B.1 (Estimate of \({\bar{\mathcal A}}_k\)): First, we estimate the four terms below; the remaining terms can be estimated similarly. It follows from (16) and (17) that

$$\begin{aligned}&\diamond ~\Big | \text{ tr } \Big (\tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_k (I_d -\tilde{U}_k^{\dagger } U_k U_i^{\dagger } \tilde{U}_i) (\tilde{U}_k^{\dagger }\tilde{U}_i-I_d)(I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j) \Big ) \Big | \nonumber \\&\qquad \qquad \le \Vert \tilde{U}_i^{\dagger } U_i U_k^{\dagger } \tilde{U}_k \Vert \cdot \Vert I_d -\tilde{U}_k^{\dagger } U_k U_i^{\dagger } \tilde{U}_i \Vert \cdot \Vert \tilde{U}_k^{\dagger }\tilde{U}_i-I_d \Vert \cdot \Vert I_d-\tilde{U}_i^{\dagger } U_i U_j^{\dagger } \tilde{U}_j \Vert \nonumber \\&\qquad \qquad \le D({\tilde{U}}) d(U, {\tilde{U}})^2, \nonumber \\&\diamond ~ \Big | \text{ tr }\Big ((\tilde{U}_i^{\dagger }\tilde{U}_k-I_d) (I_d -\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \Big ) \Big | \nonumber \\&\qquad \qquad \le \Vert \tilde{U}_i^{\dagger }\tilde{U}_k-I_d \Vert \cdot \Vert I_d -\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i \Vert \cdot \Vert I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j \Vert \nonumber \\&\qquad \qquad \le D({\tilde{U}}) d(U, {\tilde{U}})^2, \nonumber \\&\diamond ~\Big | \text{ tr } \Big ( (\tilde{U}_j^{\dagger }U_kU_j^{\dagger }\tilde{U}_j-I_d) (I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \Big ) \Big | \nonumber \\&\qquad \qquad \le \Vert \tilde{U}_j^{\dagger }U_kU_j^{\dagger }\tilde{U}_j-I_d \Vert \cdot \Vert I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k \Vert \cdot \Vert I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j \Vert \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\qquad \qquad \le D(U) d(U, {\tilde{U}})^2, \nonumber \\&\diamond ~\Big | \text{ tr } \Big ( (I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (\tilde{U}_k^{\dagger }\tilde{U}_j-I_d) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) \Big ) \Big | \le D({\tilde{U}}) d(U, {\tilde{U}})^2. \end{aligned}$$
(57)

In the third estimate of (57), we used the relation:

$$\begin{aligned} \Vert {\tilde{U}}_j^{\dagger } U_k U_j^{\dagger } {\tilde{U}}_j - I_d \Vert = \Vert {\tilde{U}}_j ({\tilde{U}}_j^{\dagger } U_k U_j^{\dagger } {\tilde{U}}_j - I_d ) {\tilde{U}}_j^{\dagger } \Vert = \Vert U_k U_j^{\dagger } - I_d \Vert = \Vert U_k - U_j\Vert \le D(U). \end{aligned}$$

The other terms can be estimated similarly; thus, we obtain

$$\begin{aligned} |{\bar{\mathcal A}}_k| \le (2D(U) + 6 D({\tilde{U}})) d(U, {\tilde{U}})^2 \le 8 \alpha _1 d(U, {\tilde{U}})^2. \end{aligned}$$

\(\diamond \) Case B.2 (Estimate of \({\bar{\mathcal B}}_k\)): Similar to Case A, we obtain using (37) that

$$\begin{aligned} |{\bar{\mathcal B}}_k| \le 2 d(U, {\tilde{U}})^3 \le 2(D(U) + D({\tilde{U}})) d(U, {\tilde{U}})^2 \le 4 \alpha _1 d(U, {\tilde{U}})^2. \end{aligned}$$

\(\diamond \) Case B.3 (Estimate of \({\bar{\mathcal C}}_k\)): Recall that

$$\begin{aligned} {\bar{\mathcal C}}_k&:=2 \text{ tr }\Big [ (I_d-\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j) +(I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j)\\& +(I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i) +(I_d -\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j) (I_d -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i)\Big ]. \end{aligned}$$

Directly expanding the expression for \({\bar{\mathcal C}}_k\) yields

$$\begin{aligned} {\bar{\mathcal C}}_k&=2 \text{ tr }\Big [ (I_d-\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j+\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j)\\& +(I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j+\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j)\\& +(I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i+\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i)\\&+(I_d -\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i+\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i)\Big ]. \end{aligned}$$

Using the relation \(\text{ tr }(AB) = \text{ tr }(BA)\) and \(\text{ tr }(UAU^{\dagger }) = \text{ tr }(A)\) for unitary U to cancel terms with index k yields

$$\begin{aligned} {\bar{\mathcal C}}_k&=2 \text{ tr }\Big [ (I_d-\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i -\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j+\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j)\\&\quad +(I_d -\tilde{U}_j^{\dagger }U_jU_k^{\dagger }\tilde{U}_k-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j+U_k^{\dagger }\tilde{U}_k\tilde{U}_i^{\dagger }U_i)\\&\quad +(I_d -\tilde{U}_i^{\dagger }U_iU_k^{\dagger }\tilde{U}_k -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i+U_k^{\dagger }\tilde{U}_k\tilde{U}_j^{\dagger }U_j)\\&\quad +(I_d -\tilde{U}_k^{\dagger }U_kU_j^{\dagger }\tilde{U}_j -\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i+\tilde{U}_k^{\dagger }U_kU_i^{\dagger }\tilde{U}_i)\Big ]\\&=4 \text{ tr }\Big [2I_d-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j-\tilde{U}_j^{\dagger }U_jU_i^{\dagger }\tilde{U}_i\Big ]\\&=4 \text{ tr }\Big [(I_d-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j)(I_d-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j)^{\dagger }\Big ]\\&=4\Vert I_d-\tilde{U}_i^{\dagger }U_iU_j^{\dagger }\tilde{U}_j\Vert ^2\\&=4d(U(t),\tilde{U}(t))^2. \end{aligned}$$

Note that indices i and j are chosen so that the last equality holds. Finally, in (53), we combine all estimates in Case A and Case B to obtain

$$\begin{aligned} \left| \frac{d}{dt} d(U,\tilde{U})^2+2 K d(U,\tilde{U})^2\right| \le 6 \alpha _1 K d(U,\tilde{U})^2. \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Ryoo, SY. On the Emergence and Orbital Stability of Phase-Locked States for the Lohe Model. J Stat Phys 163, 411–439 (2016). https://doi.org/10.1007/s10955-016-1481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1481-4

Keywords

Mathematics Subject Classification

Navigation