Skip to main content
Log in

Emergent Dynamics of a Generalized Lohe Model on Some Class of Lie Groups

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2023

This article has been updated

Abstract

We introduce a Lohe group which is a new class of matrix Lie groups and present a continuous dynamical system for the synchronization of group elements in a Lohe group. The Lohe group includes classical Lie groups such as the orthogonal, unitary, and symplectic groups, and since Lohe groups need not be compact, global existence of ODEs may fail. The proposed dynamical system generalizes the Lohe model (Lohe in J Phys A 43:465301, 2010; Lohe in J Phys A 42:395101–395126, 2009) itself a nonabelian generalization of the Kuramoto model, and alongside we also generalize the analytical framework (Ha and Ryoo in J Stat Phys 163:411–439, 2016) of emergent and unique phase-locked states. For the construction of the phase-locked states, we introduce Lyapunov functions measuring the ensemble diameter and the dissimilarity between two Lohe flows, and derive Gronwall-type differential inequalities for them. The global existence of solutions then become a consequence of the boundedness of these Lyapunov functions. Our sufficient framework for the emergent dynamics is formulated in terms of coupling strength and initial states, and it leads to the global existence of solutions and the formation and uniqueness of a phase-locked asymptotic state. As a concrete example, we demonstrate how our theory can show emergent phenomenon on the Heisenberg group, where all initial configurations tend to a unique phase-locked state exponentially fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Acebron, J.A., Bonilla, L.L., Pérez Vicente, C. J. P., Ritort, F. and Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

  2. Aeyels, D., Rogge, J.: Stability of phase locking and existence of frequency in networks of globally coupled oscillators. Progress Theor. Phys. 112, 921–941 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966)

    Article  ADS  Google Scholar 

  5. Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Choi, S.-H., Ha, S.-Y.: Emergent behaviors of quantum Lohe oscillators with all-to-all couplings. J. Nonlinear Sci. 25, 1257–1283 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choi, S.-H., Ha, S.-Y.: Time-delayed interactions and synchronization of identical Lohe oscillators. Q. Appl. Math. 74, 297–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, S.-H., Ha, S.-Y.: Large-time dynamics of the asymptotic Lohe model with a small-time delay. J. Phys. A 48, 425101 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger-Lohe model. J. Phys. A 47, 355104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM. J. App. Dyn. 13, 1417–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dörfler, F. and Bullo, F.: Exploring synchronization in complex oscillator networks. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 7157–7170 (2012)

  16. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, Z.-M., Zhao, M., Zhou, T., Zhu, C.-P., Wang, B.-H.: Phase synchronization of non-Abelian osclilators on small-world networks. Phys. Lett. A 362, 115–119 (2007)

    Article  ADS  MATH  Google Scholar 

  18. Ha, S.-Y., Kim, H.W., Ryoo, S.-Y.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 14, 1073–1091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 3, 209–267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ha, S.-Y., Ryoo, S.-Y.: On the emergence and orbital stability of phase-locked states for the Lohe model. J. Stat. Phys. 163, 411–439 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hall, B.: Lie groups, Lie Algebras, and Rrepresentations: An Elementary Introduction. Springer, New York (2003)

    Book  Google Scholar 

  23. Jadbabaie, A., Motee, N. and Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004)

  24. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  25. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  26. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)

    Article  ADS  Google Scholar 

  27. Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101–395126 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)

    MATH  Google Scholar 

  33. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  34. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  ADS  Google Scholar 

  38. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    Book  MATH  Google Scholar 

  39. Xu, M., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Quantum synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014)

    Article  ADS  Google Scholar 

  40. Zhu, B., Schachenmayer, J., Xu, M., Herrera, F., Restrepo, J.G., Holland, M.J., Rey, A.M.: Synchronization of interacting dipoles. New J. Phys. 17, 083063 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of S.-Y. Ha is supported by the Samsung Science and Technology Foundation under Project Number SSTF-BA1401-03. The work of D. Ko is supported by TJ Park foundation. The work of S.-Y. Ryoo is supported by the SNU Undergraduate Research Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeon Ryoo.

Additional information

The original online version of this article was revised: In this article the author’s name Seung-Yeon Ryoo was incorrectly written as Sang Woo Ryoo.

Appendices

Appendix 1: Proof of Proposition 2.4

Lemma 7.1

Let \({\mathcal X} = (X_1, \ldots , X_N)\) be a solution to (1.3). Then, we have

$$\begin{aligned} \frac{d}{dt}X_i X_j^{-1}&=~H_i X_i X_j^{-1}-X_i X_j^{-1} H_j\\&\quad +\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}-X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\right] . \end{aligned}$$

Proof

Recall that \(X_i\) satisfies

$$\begin{aligned} \dot{X}_i X_i^{-1}=H_i+\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_i^{-1} - X_i X_k^{-1}\right] , \end{aligned}$$
(7.1)

Then, we use

$$\begin{aligned} \dot{X}_i X_i^{-1} +X_i \dot{X}_i^{-1}=\frac{d}{dt}X_i X_i^{-1}=\frac{d}{dt}I_d=0 \end{aligned}$$

to obtain

$$\begin{aligned} X_i \dot{X}_i^{-1}=-H_i+\frac{K}{2N}\sum _{k=1}^N\left[ -X_k X_i^{-1} + X_i X_k^{-1}\right] . \end{aligned}$$
(7.2)

Hence, the relations (7.1) and (7.2) yield

$$\begin{aligned}&\dot{X}_i =H_i X_i+\frac{K}{2N}\sum _{k=1}^N\left[ X_k - X_i X_k^{-1} X_i\right] , \nonumber \\&\dot{X}_i^{-1}=-X_i^{-1} H_i+\frac{K}{2N}\sum _{k=1}^N\left[ -X_i^{-1}X_k X_i^{-1} + X_k^{-1}\right] . \end{aligned}$$
(7.3)

Then, we use (7.3) to obtain the desired estimate:

$$\begin{aligned} \frac{d}{dt}X_i X_j^{-1}&=~\dot{X}_i X_j^{-1}+X_i \dot{X}_j^{-1}\\&=~H_i X_i X_j^{-1}+\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}\right] \\&\quad -X_i X_j^{-1} H_j+\frac{K}{2N}\sum _{k=1}^N\left[ -X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\right] \\&=~H_i X_i X_j^{-1}-X_i X_j^{-1} H_j\\&\quad +\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}-X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\right] . \end{aligned}$$

\(\square \)

We now present the proof of Proposition 2.4. For this, we split its proof into several steps.

\(\bullet \) Step A: We claim that solutions of the form (2.5):

$$\begin{aligned} X_i(t)=X_i^\infty e^{\Lambda t},\quad i=1,\ldots ,N, \end{aligned}$$

where \(X_i^\infty \in G\) and \(\Lambda \in \mathfrak {g}\) satisfy (2.6):

$$\begin{aligned} X_i^\infty \Lambda (X_i^\infty )^{-1}=H_i+\frac{K}{2N}\sum _{k=1}^N\left[ X_k^\infty (X_i^\infty )^{-1}-X_i^\infty (X_k^\infty )^{-1}\right] ,\quad i=1,\ldots ,N, \end{aligned}$$

are phase-locked states of (1.3).

Proof of claim

We multiply \(X_i^{\infty }(X_j^{\infty })^{-1}\) on the right of (2.6) for i to obtain

$$\begin{aligned} X_i^\infty \Lambda (X_j^\infty )^{-1}=H_i X_i^{\infty } (X_j^{\infty })^{-1}+\frac{K}{2N}\sum _{k=1}^N\left[ X_k^{\infty } (X_j^{\infty })^{-1} - X_i^{\infty } (X_k^{\infty })^{-1} X_i^{\infty } (X_j^{\infty })^{-1}\right] . \end{aligned}$$
(7.4)

We again multiply \(X_i^{\infty }(X_j^{\infty })^{-1}\) on the left of (2.6) for j to obtain

$$\begin{aligned} X_i^\infty \Lambda (X_j^\infty )^{-1}=X_i^{\infty } (X_j^{\infty })^{-1} H_j+\frac{K}{2N}\sum _{k=1}^N\left[ X_i^{\infty }(X_j^{\infty })^{-1}X_k^{\infty } (X_j^{\infty })^{-1} - X_i^{\infty } (X_k^{\infty })^{-1}\right] . \end{aligned}$$
(7.5)

Subtraction (7.5) from (7.4) gives

$$\begin{aligned} 0&=~H_i X_i^{\infty } (X_j^{\infty })^{-1}-X_i^{\infty } (X_j^{\infty })^{-1} H_j\nonumber \\&\quad +\frac{K}{2N}\sum _{k=1}^N\left[ X_k^{\infty } (X_j^{\infty })^{-1} - X_i^{\infty } (X_k^{\infty })^{-1} X_i^{\infty } (X_j^{\infty })^{-1}\right. \nonumber \\&\left. \quad -X_i^{\infty }(X_j^{\infty })^{-1}X_k^{\infty } (X_j^{\infty })^{-1} + X_i^{\infty } (X_k^{\infty })^{-1}\right] \end{aligned}$$
(7.6)

Thus, it follows from Lemma 7.1 that we have

$$\begin{aligned} \frac{d}{dt}X_i X_j^{-1}&=~H_i X_i X_j^{-1}-X_i X_j^{-1} H_j\\&\quad +\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}-X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\right] \\&=~H_i X_i^{\infty } (X_j^{\infty })^{-1}-X_i^{\infty } (X_j^{\infty })^{-1} H_j\\&\quad +\frac{K}{2N}\sum _{k=1}^N\left[ X_k^{\infty } (X_j^{\infty })^{-1} - X_i^{\infty } (X_k^{\infty })^{-1} X_i^{\infty } (X_j^{\infty })^{-1}\right. \\&\left. \quad -X_i^{\infty }(X_j^{\infty })^{-1}X_k^{\infty } (X_j^{\infty })^{-1} + X_i^{\infty } (X_k^{\infty })^{-1}\right] \\&=~0. \end{aligned}$$

We used (7.6) at the final equation. This tells us that \(X_i X_j^{-1}\) is constant, so \({\mathcal X}\) is a phase-locked state by definition. \(\square \)

  • Step B: We claim that if a solution \({\mathcal X}\) to (2.4) exhibits asymptotic entrainment, then there is a phase-locked state \({\mathcal Y}\) of the form (2.5), (2.6) so that

    $$\begin{aligned} \lim _{t\rightarrow \infty }X_i(t)X_j^{-1}(t)=Y_iY_j^{-1},\quad i,j=1,\ldots ,N. \end{aligned}$$

Proof

We set

$$\begin{aligned} V^{\infty }_i := \lim _{t\rightarrow \infty }(X_iX_1^{-1})(t), \quad i =1, \ldots , N. \end{aligned}$$

Then, by definition of asymptotic entrainment, we have

$$\begin{aligned} V_i^\infty \in G. \end{aligned}$$

On the other hand, we recall Lemma 7.1:

$$\begin{aligned} \frac{d}{dt}X_i X_j^{-1}= & {} H_i X_i X_j^{-1}-X_i X_j^{-1} H_j\nonumber \\&+\frac{K}{2N}\sum _{k=1}^N\left[ X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}-X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\right] .\qquad \end{aligned}$$
(7.7)

Since \({\mathcal X}\) exhibits asymptotic entrainment, the right-hand side of (7.7) attains a limit value, hence the left-hand side \(\frac{d}{dt}X_i X_j^{-1}\) must attain a limit value. On the other hand, \(X_i X_j^{-1}\) itself also converges. Thus, the limit value of \(\frac{d}{dt}X_i X_j^{-1} \) must be 0.

On the other hand, we observe that \(X_i X_j^{-1}=(X_iX_1^{-1})(X_jX_1^{-1})\) converges to \(V_iV_j^{-1}\). Thus, (7.7) implies

$$\begin{aligned} 0= & {} H_i V^{\infty }_i (V_j^{\infty })^{-1} - V^{\infty }_i (V_j^{\infty })^{-1} H_j \nonumber \\&+\frac{K}{2N}\sum _{k=1}^{N} \left[ V^{\infty }_k(V_j^{\infty })^{-1}- V^{\infty }_i (V_k^{\infty })^{-1} V^{\infty }_i (V_j^{\infty })^{-1} +V^{\infty }_i (V_k^{\infty })^{-1} \right. \nonumber \\&-\left. V^{\infty }_i (V_j^{\infty })^{-1} V^{\infty }_k (V_j^{\infty })^{-1} \right] . \end{aligned}$$
(7.8)

Left-multiplying by \((V_i^{\infty })^{-1}\), right-multiplying by \(V^{\infty }_j\), and rearranging terms in (7.8) yield

$$\begin{aligned}&(V_i^{\infty })^{-1} H_i V^{\infty }_i +\frac{K}{2N}\sum _{k = 1}^{N} \left[ (V_i^{\infty })^{-1} V^{\infty }_k- (V_k^{\infty })^{-1} V^{\infty }_i\right] \\&\quad = (V_j^{\infty })^{-1} H_j V^{\infty }_j +\frac{K}{2N}\sum _{k = 1}^{N} \left[ (V_j^{\infty })^{-1} V^{\infty }_k- (V_k^{\infty })^{-1} V^{\infty }_j\right] , \quad 1 \le i, j \le N. \end{aligned}$$

Note that the left-hand side depends only on the index i, and that the right-hand side depends only on the index j. Hence, we introduce an index-independent matrix \(\Lambda \) that satisfies

$$\begin{aligned} \Lambda =(V_i^{\infty })^{-1} H_i V^{\infty }_i +\frac{K}{2N}\sum _{k = 1}^{N} \left[ (V_i^{\infty })^{-1} V^{\infty }_k- (V_k^{\infty })^{-1} V^{\infty }_i\right] , \quad 1 \le i, j \le N. \end{aligned}$$

Since \(\mathfrak {g}\) is closed under conjugation by elements of G and (2.3) holds, we see that \(\Lambda \in \mathfrak {g}\). Upon conjugating (2.6) by \(V_i^\infty \), we obtain (2.6):

$$\begin{aligned} V_i^\infty \Lambda (V_i^\infty )^{-1}=H_i+\frac{K}{2N}\sum _{j=1}^N\left[ V_j^\infty (V_i^\infty )^{-1}-V_i^\infty (V_j^\infty )^{-1}\right] ,\quad i=1,\ldots ,N. \end{aligned}$$

By Step A, \(\{Y_i\} :=\{V^{\infty }_i e^{-{\mathrm i} \Lambda t}\}\) is a phase-locked state for (2.4). Moreover, \(Y_i\) satisfies

$$\begin{aligned} Y_i Y_j^{-1}=V^{\infty }_i (V_j^{\infty })^{-1}=\lim _{t\rightarrow \infty } (X_i X_j^{-1})(t), \end{aligned}$$

as claimed.

  • Step C: We claim that if \({\mathcal Y}\) is a phase-locked state, then there is a phase-locked state \({\mathcal Z}\) of the form (2.5), (2.6) so that

    $$\begin{aligned} Y_iY_j^{-1}=Z_iZ_j^{-1},\quad i,j=1,\ldots ,N. \end{aligned}$$

\(\square \)

Proof of claim

If \({\mathcal Y}\) is a phase-locked state, then \({\mathcal Y}\) exhibits asymptotic entrainment. Thus, we are done by Step B.

  • Step D: We claim that every phase-locked state \({\mathcal Y}\) must be of the form (2.5), (2.6). Also, part (ii) of Proposition 2.4 holds.\(\square \)

Proof of claim

By Step C, there exists a phase-locked state \(\{Z_i=V_i^\infty e^{\Lambda t}\}\) of the form (2.5), (2.6), satisfying

$$\begin{aligned} Y_iY_j^{-1}=Z_iZ_j^{-1}=V_i^\infty (V_j^\infty )^{-1},\quad i,j=1,\ldots ,N. \end{aligned}$$

Then, we have

$$\begin{aligned} \dot{Y}_i Y_i^{-1}&=H_i+\frac{K}{2N}\sum _j\left[ Y_j Y_i^{-1} - Y_i Y_j^{-1}\right] \\&= H_i+\frac{K}{2N}\sum _j\left[ V_j^\infty (V_i^\infty )^{-1} - V_i^\infty (V_j^\infty )^{-1}\right] \\&= V_i^\infty \Lambda (V_i^\infty )^{-1}. \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{d}{dt}\left[ \exp \left( -V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) Y_i\right] =&~\exp \left( -V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) \left[ -V_i^\infty \Lambda (V_i^\infty )^{-1}Y_i+\dot{Y}_i\right] =0, \end{aligned}$$

so that \(\exp \left( -V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) Y_i\) is constant, maintaining its value at \(t=0\):

$$\begin{aligned} \exp \left( -V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) Y_i=Y_i^0. \end{aligned}$$
(7.9)

On the other hand, we have

$$\begin{aligned} Y_i^0(Y_j^0)^{-1}=V_i^\infty (V_j^\infty )^{-1}\quad \Longrightarrow \quad (V_i^\infty )^{-1}Y_i^0=(V_j^\infty )^{-1}Y_j^0. \end{aligned}$$

Therefore, there is an index-independent matrix \(R\in G\) such that

$$\begin{aligned} R=(V_i^\infty )^{-1}Y_i^0,\quad i=1,\ldots ,N. \end{aligned}$$

We insert \(Y_i^0=V_i^\infty R\) into (7.9):

$$\begin{aligned} Y_i =\exp \left( V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) Y_i^0 =\exp \left( V_i^\infty \Lambda (V_i^\infty )^{-1}t\right) V_i^\infty R =V_i^\infty \exp (\Lambda t)R. \end{aligned}$$

This implies that (ii) of Proposition 2.4 holds. Manipulating the above equation further, we have

$$\begin{aligned} Y_i= V_i^\infty R\exp (R^{-1}\Lambda Rt). \end{aligned}$$

It is clear that \(V_i^\infty R\in G\) and \(R^{-1}\Lambda R\in \mathfrak {g}\) satisfy (2.6). Hence \(\{Y_i\}\) is of the form (2.5), (2.6). \(\square \)

Appendix 2: Proof of Lemma 3.1

We first need a simple lemma that relates the behavior of a matrix-valued function to the dynamics of its norm.

Lemma 7.2

Let A(t) and B(t) be \(d\times d\)-matrix valued functions satisfying the following ODE:

$$\begin{aligned} \frac{d}{dt}A(t)=-KA(t)+B(t). \end{aligned}$$

Then, we have

$$\begin{aligned} \left| \frac{d}{dt}\Vert A\Vert +K\Vert A\Vert \right| \le \Vert B\Vert \end{aligned}$$

whenever \(\Vert A\Vert >0\).

Proof

Note that

$$\begin{aligned} \frac{d}{dt}\Vert A\Vert ^2&=\frac{d}{dt} tr(AA^{\dagger }) =tr(\dot{A}A^{\dagger })+tr(A\dot{A}^{\dagger }) =2{\text {Re}} (tr(\dot{A}A^{\dagger }))\\&=2{\text {Re}} (tr(-KAA^{\dagger }+BA^{\dagger })) =-2K\Vert A\Vert ^2+2{\text {Re}} (tr(BA^{\dagger })) \end{aligned}$$

This yields

$$\begin{aligned} \left| \frac{d}{dt}\Vert A\Vert ^2+2K\Vert A\Vert ^2\right| \le 2|{\text {Re}} (tr(BA^{\dagger }))|\le 2\Vert B\Vert \Vert A\Vert . \end{aligned}$$

If \(\Vert A\Vert >0\), we may divide both sides by \(2\Vert A\Vert \) to obtain the statement. \(\square \)

We are now ready to present the proof of Lemma 3.1.

Proof of Lemma 3.1

Given a time t, choose indices i and j so that

$$\begin{aligned} D(X(t))=\Vert X_iX_j^{-1}-I_d\Vert . \end{aligned}$$

We approximate the term in the brackets in Lemma 7.1:

$$\begin{aligned}&X_k X_j^{-1} - X_i X_k^{-1} X_i X_j^{-1}-X_iX_j^{-1}X_k X_j^{-1} + X_i X_k^{-1}\\&\quad = -(X_i X_k^{-1}-I_d)\left( X_i X_j^{-1}-I_d\right) -\left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) -2\left( X_i X_j^{-1}-I_d\right) . \end{aligned}$$

We now use Lemma 7.1 to rewrite

$$\begin{aligned}&\frac{d}{dt}\left( X_i X_j^{-1}-I_d\right) =-K(X_i X_j^{-1}-I_d) +H_i-H_j+H_i\left( X_iX_j^{-1}-I_d\right) -\left( X_iX_j^{-1}-I_d\right) H_j\nonumber \\&\quad +\frac{K}{2N}\sum _{k=1}^N \left[ -\left( X_i X_k^{-1}-I_d)(X_i X_j^{-1}-I_d\right) -\left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) \right] .\nonumber \\ \end{aligned}$$
(7.10)

Finally, we use Lemma 7.2 to obtain

$$\begin{aligned}&\left| \frac{d}{dt}\Vert X_iX_j^{-1}-I_d\Vert +K\Vert X_iX_j^{-1}-I_d\Vert \right| \\&\quad \le \Vert H_i-H_j\Vert +\left\| H_i\left( X_iX_j^{-1}-I_d\right) \right\| +\left\| \left( X_iX_j^{-1}-I_d\right) H_j\right\| \\&\qquad +\frac{K}{2N}\sum _{k=1}^N \left[ \left\| \left( X_i X_k^{-1}-I_d\right) \left( X_i X_j^{-1}-I_d\right) \right\| +\left\| \left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) \right\| \right] \\&\quad \le \Vert H_i-H_j\Vert +\Vert H_i\Vert \left\| \left( X_iX_j^{-1}-I_d\right) \right\| +\left\| \left( X_iX_j^{-1}-I_d\right) \right\| \Vert H_j\Vert \\&\qquad +\frac{K}{2N}\sum _{k=1}^N \left[ \left\| \left( X_i X_k^{-1}-I_d\right) \right\| \left\| \left( X_i X_j^{-1}-I_d\right) \right\| +\left\| \left( X_iX_j^{-1}-I_d\right) \right\| \left\| \left( X_k X_j^{-1}-I_d\right) \right\| \right] \\&\quad \le D({\mathcal H})+2\Vert {\mathcal H}\Vert _\infty D({\mathcal X}(t))+KD({\mathcal X}(t))^2, \end{aligned}$$

whenever \(\Vert X_iX_j^{-1}-I_d\Vert >0\). By our choice of i and j, we obtain the statement of the lemma. \(\square \)

Appendix 3: Proof of Lemma 5.1

We start with (7.10) in the proof of Lemma 3.1:

$$\begin{aligned}&\frac{d}{dt}\left( X_i X_j^{-1}-I_d\right) \nonumber \\&\quad =-K\left( X_i X_j^{-1}-I_d\right) +H_i-H_j+H_i\left( X_iX_j^{-1}-I_d\right) -(X_iX_j^{-1}-I_d)H_j\nonumber \\&\qquad +\frac{K}{2N}\sum _{k=1}^N \left[ -\left( X_i X_k^{-1}-I_d\right) \left( X_i X_j^{-1}-I_d\right) -\left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) \right] .\nonumber \\ \end{aligned}$$
(7.11)

Similarly, we obtain

$$\begin{aligned}&\frac{d}{dt}(\tilde{X}_i \tilde{X}_j^{-1}-I_d) \nonumber \\&\quad =-K(\tilde{X}_i \tilde{X}_j^{-1}-I_d) +H_i-H_j+H_i\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) -\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) H_j\nonumber \\&\qquad +\frac{K}{2N}\sum _{k=1}^N \left[ -\left( \tilde{X}_i \tilde{X}_k^{-1}-I_d\right) (\tilde{X}_i \tilde{X}_j^{-1}-I_d)-\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) \left( \tilde{X}_k \tilde{X}_j^{-1}-I_d\right) \right] .\nonumber \\ \end{aligned}$$
(7.12)

Subtracting these two equations (7.11) and (7.12) gives

$$\begin{aligned} \frac{d}{dt}(X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1})= -K(X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1}) +\mathcal {P}_0+\frac{K}{2N}\sum _{k=1}^N \mathcal {P}_k, \end{aligned}$$

where

$$\begin{aligned} \mathcal {P}_0&:=\left[ H_i-H_j+H_i\left( X_iX_j^{-1}-I_d\right) -(X_iX_j^{-1}-I_d)H_j\right] \\&\quad -\left[ H_i-H_j+H_i\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) -(\tilde{X}_i\tilde{X}_j^{-1}-I_d)H_j\right] \\&= ~H_i(X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1})-(X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1})H_j \end{aligned}$$

and

$$\begin{aligned} \mathcal {P}_k&:=\left[ -\left( X_i X_k^{-1}-I_d\right) \left( X_i X_j^{-1}-I_d\right) -\left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) \right] \\&\quad -\left[ -\left( \tilde{X}_i \tilde{X}_k^{-1}-I_d)(\tilde{X}_i \tilde{X}_j^{-1}-I_d\right) -\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) \left( \tilde{X}_k \tilde{X}_j^{-1}-I_d\right) \right] \\&=\left[ -\left( X_i X_k^{-1}-I_d\right) \left( X_i X_j^{-1}-I_d\right) +\left( \tilde{X}_i \tilde{X}_k^{-1}-I_d\right) (\tilde{X}_i \tilde{X}_j^{-1}-I_d)\right] \\&\quad -\left[ \left( X_iX_j^{-1}-I_d\right) \left( X_k X_j^{-1}-I_d\right) -\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) \left( \tilde{X}_k \tilde{X}_j^{-1}-I_d\right) \right] \\&=\left[ -\left( X_i X_k^{-1}-\tilde{X}_i \tilde{X}_k^{-1}\right) \left( X_i X_j^{-1}-I_d\right) +\left( \tilde{X}_i \tilde{X}_k^{-1}-I_d\right) \left( \tilde{X}_i\tilde{X}_j^{-1}-X_iX_j^{-1}\right) \right] \\&\quad -\left[ (X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1})\left( X_k X_j^{-1}-I_d\right) -\left( \tilde{X}_i\tilde{X}_j^{-1}-I_d\right) \left( \tilde{X}_k \tilde{X}_j^{-1}-X_k X_j^{-1}\right) \right] . \end{aligned}$$

Then, we have

$$\begin{aligned} \Vert \mathcal {P}_0\Vert \le ~ \Vert H_i\Vert \Vert X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1}\Vert +\Vert X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1}\Vert \Vert H_j\Vert \le ~ 2\Vert {\mathcal H} \Vert _\infty d({\mathcal X},\tilde{{\mathcal X}}) \end{aligned}$$

and

$$\begin{aligned} \Vert \mathcal {P}_k\Vert&\le \left[ \Vert X_i X_k^{-1}-\tilde{X}_i \tilde{X}_k^{-1}\Vert \Vert X_i X_j^{-1}-I_d\Vert +\Vert \tilde{X}_i \tilde{X}_k^{-1}-I_d\Vert \Vert \tilde{X}_i\tilde{X}_j^{-1}-X_iX_j^{-1}\Vert \right] \\&\quad +\left[ \Vert X_iX_j^{-1}-\tilde{X}_i\tilde{X}_j^{-1}\Vert \Vert X_k X_j^{-1}-I_d\Vert +\Vert \tilde{X}_i\tilde{X}_j^{-1}-I_d\Vert \Vert \tilde{X}_k \tilde{X}_j^{-1}-X_k X_j^{-1}\Vert \right] \\&\le ~ 4\max \{D({\mathcal X}),D(\tilde{{\mathcal X}})\}d({\mathcal X},\tilde{{\mathcal X}}). \end{aligned}$$

Finally, we apply Lemma 7.2 to obtain

$$\begin{aligned}&\left| \frac{d}{dt}\Vert X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1}\Vert +K\Vert X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1}\Vert \right| \\& \le \Vert \mathcal {P}_0\Vert +\frac{K}{2N}\sum _{k=1}^N \Vert \mathcal {P}_k\Vert \\& \le 2\Vert {\mathcal H} \Vert _\infty d({\mathcal X},\tilde{{\mathcal X}})+\frac{K}{2}\cdot 4\max \{D({\mathcal X}),D(\tilde{{\mathcal X}})\}d({\mathcal X},\tilde{{\mathcal X}})\\& \le 2(\Vert {\mathcal H}\Vert _\infty +K\max \{D({\mathcal X}),D(\tilde{{\mathcal X}})\})d({\mathcal X},\tilde{{\mathcal X}}), \end{aligned}$$

whenever \(\Vert X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1}\Vert >0\). For each time \(t \ge 0\), we choose indices ij so that

$$\begin{aligned} d({\mathcal X}(t),\tilde{{\mathcal X}}(t))=\Vert X_i X_j^{-1}-\tilde{X}_i \tilde{X}_j^{-1}\Vert (t), \end{aligned}$$

to obtain the asserted inequality for \(d({\mathcal X}(t),\tilde{{\mathcal X}}(t))\).

Appendix 4: Proof of Lemma 5.2

We next provide the proof of Lemma 5.2. It follows from (1.3) that we have

$$\begin{aligned} \Vert X_i\dot{X}_i^{-1}\Vert= & {} \Vert \dot{X}_iX_i^{-1}\Vert = \Big \Vert H_i+\frac{K}{2N}\sum _j\left( X_jX_i^{-1}-X_iX_j^{-1}\right) \Big \Vert \\= & {} \Big \Vert H_i+\frac{K}{2N}\sum _j\left[ \left( X_jX_i^{-1}-I_d\right) +\left( I_d-X_iX_j^{-1}\right) \right] \Big \Vert \\\le & {} \Vert H\Vert _\infty +KD(\mathcal {X}) \le \Vert H\Vert _\infty +K\alpha _1. \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{d}{dt}\Vert X_i\Vert ^2&=2{\text {Re}}tr\left( \dot{X}_iX_i^\dagger \right) =2{\text {Re}}tr\left[ \left( \dot{X}_iX_i^{-1}\right) \left( X_iX_i^\dagger \right) \right] \\&\le 2\left\| \dot{X}_iX_i^{-1}\right\| \left\| X_iX_i^\dagger \right\| \le 2\left\| \dot{X}_iX_i^{-1}\right\| \left\| X_i\right\| ^2 \\&\le 2(\Vert H\Vert _\infty +K\alpha _1)\Vert X_i\Vert ^2, \end{aligned}$$

and similarly

$$\begin{aligned} \frac{d}{dt}\Vert X_i^{-1}\Vert ^2&=2{\text {Re}}tr\left( \dot{X}_i^{-1}\left( X_i^{-1}\right) ^\dagger \right) =2{\text {Re}}tr\left[ \left( X_i\dot{X}_i^{-1}\right) \left( \left( X_i^{-1}\right) ^\dagger X_i^{-1}\right) \right] \\&\le 2(\Vert H\Vert _\infty +K\alpha _1)\Vert X_i^{-1}\Vert ^2. \end{aligned}$$

This yields

$$\begin{aligned}&\max _{1\le i \le N} \Vert X_i\Vert \le e^{(\Vert H\Vert _\infty +K\alpha _1)t}\max _{1 \le i \le N} \Vert X_i(0)\Vert , \\&\max _{1\le i \le N} \Vert X_i^{-1}\Vert \le e^{(\Vert H\Vert _\infty +K\alpha _1)t}\max _{1 \le i \le N} \Vert X_i^{-1}(0)\Vert . \end{aligned}$$

Appendix 5: The Explicit Forms of (6.6)

Below, we provide the estimates for three relations appearing in Sect. 6.

  • (Estimate of (6.6)\(_1\)): The term (6.6)\(_1\) is given by

    $$\begin{aligned} a_i-a_j=\frac{u_i-u_j}{K}(1-e^{-Kt})+\left( a_i^0-a_j^0\right) e^{-Kt}. \end{aligned}$$
  • (Estimate of (6.6)\(_3\)): The term (6.6)\(_3\) is given by

    $$\begin{aligned} c_i-c_j=\frac{w_i-w_j}{K}(1-e^{-Kt})+\left( c_i^0-c_j^0\right) e^{-Kt}. \end{aligned}$$
  • (Estimate of (6.6)\(_2\)): By direct calculation, we have

    $$\begin{aligned}&b_i-b_j+(a_j-a_i)c_j =\left( b_i^0-b_j^0\right) e^{-Kt}+\frac{v_i-v_j}{K}(1-e^{-Kt}) \\&\qquad +\frac{1}{2K^2}(u_iw_i+u_jw_j-2u_iw_j)(1-e^{-Kt})^2 +\frac{1}{2K}(u_i-u_j)\frac{1}{N}c_k^0(-Kte^{-Kt}+e^{-Kt}-e^{-2Kt}) \\&\qquad +\frac{1}{2K}(u_i-u_j)\frac{1}{N}w_k\left( 2te^{-Kt}-\frac{1}{K}+\frac{1}{K}e^{-2Kt}\right) \\&\qquad +\frac{1}{2}\left( u_ic_i^0-u_jc_j^0\right) \left( te^{-Kt}+\frac{1}{K}e^{-Kt}-\frac{1}{K}e^{-2Kt}\right) \\&\qquad +\frac{1}{K}(u_j-u_i)c_j^0(e^{-Kt}-e^{-2Kt}) +\frac{1}{2}(w_i-w_j)\frac{1}{N}\sum _{k=1}^N a_k^0\left( te^{-Kt}-\frac{1}{K}e^{-Kt}+\frac{1}{K}e^{-2Kt}\right) \\&\qquad +\frac{K}{2}\left( a_i^0c_i^0-a_j^0c_j^0\right) \left( -\frac{1}{K}e^{-Kt}+\frac{1}{K}e^{-2Kt}\right) +\left( a_j^0c_j^0-a_i^0c_j^0\right) e^{-2Kt} \\&\qquad +\frac{1}{2K}(w_i-w_j)\frac{1}{N}\sum _{k=1}^Nu_k\left( -2te^{-Kt}+\frac{1}{K}-\frac{1}{K}e^{-2Kt}\right) \\&\qquad +\frac{1}{2}\left( w_ia_i^0-w_ja_j^0\right) \left( -te^{-Kt}+\frac{1}{2}e^{-Kt}-\frac{1}{K}e^{-2Kt}\right) +\frac{1}{K}(a_j^0-a_i^0)w_j(e^{-Kt}-e^{-2Kt}) \\&\qquad +\frac{1}{2}\left( c_i^0-c_j^0\right) \frac{1}{N}\sum _{k=1}^N a_k^0(e^{-Kt}-e^{-2Kt})\\&\qquad +\frac{1}{2}\left( c_i^0-c_j^0\right) \frac{1}{N}\sum _{k=1}^N u_k\left( te^{-Kt}-\frac{1}{K}e^{-Kt}+\frac{1}{K}e^{-2Kt}\right) \\&\qquad +\frac{1}{2}\left( a_i^0-a_j^0\right) \frac{1}{N}\sum _{k=1}^N c_k^0(-e^{-Kt}+e^{-2Kt})\\&\qquad +\frac{1}{2}\left( a_i^0-a_j^0\right) \frac{1}{N}\sum _{k=1}^N w_k\left( -te^{-Kt}+\frac{1}{K}e^{-Kt}-\frac{1}{K}e^{-2Kt}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Ko, D. & Ryoo, SY. Emergent Dynamics of a Generalized Lohe Model on Some Class of Lie Groups. J Stat Phys 168, 171–207 (2017). https://doi.org/10.1007/s10955-017-1797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1797-8

Keywords

Mathematics Subject Classification

Navigation