Skip to main content
Log in

Canonical Drude Weight for Non-integrable Quantum Spin Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, A.Y., Cheianov, V.V., Fröhlich, J.: Universality of transport properties at equilibrium, Goldstone theorem and chiral anomaly. Phys. Rev. Lett. 81, 3503 (1998)

    Article  ADS  Google Scholar 

  2. Antinucci, G., Mastropietro, V., Porta, M.: Universal edge transport in interacting Hall systems. arXiv:1708.08517

  3. Bachmann, S., De Roeck, W., Fraas, M.: The adiabatic theorem for many-body quantum systems. Phys. Rev. Lett. 119, 060201 (2017)

    Article  ADS  Google Scholar 

  4. Benfatto, G., Mastropietro, V.: Renormalization group, hidden symmetries and approximate Ward identities in the XYZ model. Rev. Math. Phys. 13, 1323–1435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benfatto, G., Mastropietro, V.: Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258, 609–655 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Benfatto, G., Mastropietro, V.: Universality relations in non-solvable quantum spin chains. J. Stat. Phys. 138, 1084–1108 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Benfatto, G., Mastropietro, V.: Drude weight in non solvable quantum spin chains. J. Stat. Phys. 143, 251–260 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Benfatto, G., Falco, P., Mastropietro, V.: Extended scaling relations for planar lattice models. Commun. Math. Phys. 292, 569–605 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Bulchandani, V.B., Vasseur, R., Karrasch, C., Moore, J.E.: Bethe–Boltzmann hydrodynamics and spin transport in the XXZ chain. Phys. Rev. B 97, 045407 (2018)

    Article  ADS  Google Scholar 

  10. Doyon, B., Spohn, H.: Drude weight for the Lieb–Liniger Bose gas. SciPost Phys. 3, 039 (2017)

    Article  Google Scholar 

  11. Giuliani, A., Greenblatt, R., Mastropietro, V.: The scaling limit of the energy correlations in non integrable Ising models. J. Math. Phys. 53, 095214 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Giuliani, A., Mastropietro, V., Porta, M.: Universality of the Hall conductivity in interacting electron systems. Commun. Math. Phys. 349, 1107–1161 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Gomez-Santos, G.: Current-carrying states and Luttinger-liquid behavior in the spin-$1/2$ XXZ linear chain. Phys. Rev. B 46, 14217 (1992)

    Article  ADS  Google Scholar 

  14. Haldane, F.D.M.: General relation of correlation exponents and spectral properties of one-dimensional fermi systems: application to the anisotropic $S=1/2$ Heisenberg chain. Phys. Rev. Lett. 45, 1358 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ilievski, E., de Nardis, J.: Microscopic origin of ideal conductivity in integrable quantum systems. Phys. Rev. Lett. 119, 020602 (2017)

    Article  ADS  Google Scholar 

  16. Ilievski, E., Prosen, T.: Thermodynamic bounds on Drude weights in terms of almost-conserved quantities. Commun. Math. Phys. 318, 809–830 (2013)

    Article  MATH  ADS  Google Scholar 

  17. Karrasch, C.: Hubbard-to-Heisenberg crossover (and efficient computation) of Drude weights at low temperatures. New J. Phys. 19, 033027 (2017)

    Article  ADS  Google Scholar 

  18. Kohn, W.: Theory of the insulating state. Phys. Rev. 133, A171 (1964)

    Article  ADS  Google Scholar 

  19. Langmann, E., Lebowitz, J., Mastropietro, V., Mooosavi, P.: Steady states and universal conductance in a quenched Luttinger model. Commun. Math. Phys. 349, 551–582 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Lieb, E.H., Robinson, D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mastropietro, V.: Non perturbative Adler–Bardeen theorem. J. Math. Phys. 48, 022302 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Mastropietro, V.: Conductivity in the Heisenberg chain with next-to-nearest-neighbor interaction. Phys. Rev. E 87, 042121 (2013)

    Article  ADS  Google Scholar 

  23. Mazur, P.: Non-ergodicity of phase functions in certain systems. Physica 43, 533 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  24. Monaco, D., Teufel, S.: Adiabatic currents for interacting electrons on a lattice. arXiv:1707.01852

  25. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Pinson, H., Spencer, T.: Universality and the two dimensional Ising model. Unpublished preprint

  27. Prosen, T.: Open XXZ spin chain: nonequilibrium steady-state and a strict bound on ballistic transport. Phys. Rev. Lett. 106, 217206 (2011)

    Article  ADS  Google Scholar 

  28. Shastry, B.S., Sutherland, B.: Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings. Phys. Rev. Lett. 65, 243 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Sirker, J., Pereira, R.G., Affleck, I.: Conservation laws, integrability, and transport in one-dimensional quantum systems. Phys. Rev. B 83, 035115 (2011)

    Article  ADS  Google Scholar 

  30. Spencer, T.: A mathematical approach to universality in two dimensions. Phys. A Stat. Mech. Appl. 279, 250–259 (2000)

    Article  MathSciNet  Google Scholar 

  31. Spohn, H.: Interacting and non-interacting integrable systems. arxiv:1705.0814

  32. Teufel, S.: Non-equilibrium almost-stationary states for interacting electrons on a lattice. arXiv:1708.03581

  33. Yang, C.N., Yang, C.P.: One-dimensional chain of anisotropic spin–spin interactions. I: proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321–339 (1966)

    Article  ADS  Google Scholar 

  34. Zotos, X.: Finite temperature Drude weight of the one-dimensional spin-/2$ Heisenberg model. Phys. Rev. Lett. 82, 1764 (1999)

    Article  ADS  Google Scholar 

  35. Zotos , X. Prelovsek, P.: Transport of strongly correlated electrons. In: Proceedings of the IV Training Course in Physics of Correlated Electron Systems and High $T_{c}$ Superconductors, Vietri sul Mare (2001)

  36. Zotos, X., Naef, F., Prelovsek, P.: Transport and conservation laws. Phys. Rev. B 55, 11029–11032 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

V.M. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC CoG UniCoSM, Grant Sgreement No. 724939). The work of M.P. has been supported by the Swiss National Science Foundation via the grant “Mathematical Aspects of Many-Body Quantum Systems”. We thank K. Gawedzki and H. Spohn for valuable discussions, and for comments on an earlier version of the manuscript. In particular, we thank H. Spohn for a stimulating discussion on the equivalence of thermal and canonical Drude weights, that motivated Appendix B below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vieri Mastropietro.

Additional information

To Jürg Fröhlich, Tom Spencer and Herbert Spohn, on their 70th birthday.

Appendices

Appendix A: Formal Derivation of Kubo Formula

In this appendix we give formal derivation of Kubo formula for the conductivity of the quantum spin chain, Eq. (2.6). Equation (2.6) provides the linear response coefficient that allows to describe the variation of the average current density after introducing a weak external electric field, assumed to be uniform in space. The electric field is adiabatically switched on at \(t=-\infty \), starting from the thermal state \(\rho _{\beta }\) of the Hamiltonian \(\mathcal {H}\).

In a rigorous derivation of Kubo formula, one has to take the thermodynamic limit before the limit of vanishing perturbation. Controlling the thermodynamic limit for a fixed external perturbation poses a technical challenge, that for interacting systems has only been solved for gapped systems, [3, 24, 32]. Instead, the models we are considering are gapless: the problem of deriving Kubo formula for this class of interacting quantum spin chains is wide open. We shall not try to study this interesting question here; instead, we will focus on the linear response of the current operator, formally neglecting higher order terms.

For simplicity, let us directly consider the case \(L=\infty \): \(\Lambda _{L} = \mathbb {Z}\). Let \(\mathcal {X} = \sum _{x} x a^{+}_{x}a^{-}_{x}\) be the second quantization of the position operator. Consider the time-dependent Hamiltonian \(\mathcal {H}(t) = \mathcal {H} - e^{\eta t} E \mathcal {X}\), for \(t\in (-\infty , 0]\) and \(\eta >0\), \(E\in \mathbb {R}\). Let \(\rho (t)\) denote the solution of the Schrödinger–von Neumann equation:

$$\begin{aligned} i\partial _{t} \rho (t) = [\mathcal {H}(t), \rho (t)],\qquad \rho (-\infty ) = \rho _{\beta }. \end{aligned}$$
(A.1)

We are interested in a formal expansion in E for the average current, in the limit \(\eta \rightarrow 0^{+}\). An application of Duhamel formula gives:

$$\begin{aligned} \mathrm {Tr}\, j_{x} \rho (0)= & {} \mathrm {Tr}\, j_{x} \rho _{\beta } - i\int _{-\infty }^{0} dt\, e^{\eta t} \mathrm {Tr}\, j_{x} [ \rho _{\beta }, E \mathcal {X}(t) ] + o(E)\nonumber \\= & {} i\int _{-\infty }^{0} dt\, e^{\eta t} \mathrm {Tr}[ j_{x}(-t), E\mathcal {X} ]\rho _{\beta } + o(E), \end{aligned}$$
(A.2)

since \(\mathrm {Tr}\, j_{x} \rho _{\beta } = 0\). Then,

$$\begin{aligned}{}[ j_{x}(-t), \mathcal {X} ]= & {} [ e^{-i \mathcal {H} t} j_{x} e^{i \mathcal {H} t}, \mathcal {X} ]\nonumber \\= & {} e^{-i \mathcal {H}t} [ j_x , \mathcal {X}] e^{i\mathcal {H}t} + [ e^{-i\mathcal {H}t}, \mathcal {X} ] j_x e^{i \mathcal {H}t} + e^{-i\mathcal {H}t} j_x [e^{i\mathcal {H}t}, \mathcal {X}],\qquad \end{aligned}$$
(A.3)

where:

$$\begin{aligned}{}[ j_x , \mathcal {X}] = -\frac{i\tau }{2} [a^{+}_{x+1} a^{-}_{x} + a^{+}_{x}a^{-}_{x+1}] \equiv i \Delta _{x}, \end{aligned}$$
(A.4)

and

$$\begin{aligned}{}[ e^{-i\mathcal {H}t}, \mathcal {X} ]= & {} e^{-i \mathcal {H} t} \mathcal {X} - \mathcal {X} e^{-i\mathcal {H} t} = \int _{t}^{0} ds\, \frac{d}{ds} e^{-i\mathcal {H}(t - s)} \mathcal {X} e^{-i\mathcal {H}s}\nonumber \\= & {} i\int _{t}^{0} ds\, e^{-i \mathcal {H}(t - s)} [ \mathcal {H}, \mathcal {X} ] e^{-i\mathcal {H}s}\nonumber \\ {}= & {} \int _{t}^{0}ds\, e^{-i\mathcal {H}t} \mathcal {J}(s), \end{aligned}$$
(A.5)

where we set \(\mathcal {J} \equiv \sum _{x} j_{x}\). Also, \([ e^{i\mathcal {H}t}, \mathcal {X} ] = -[ e^{-i\mathcal {H}t}, \mathcal {X} ]^{*} = -\int _{t}^{0}ds\, \mathcal {J}(s) e^{i\mathcal {H}t}\). Therefore, plugging (A.3)–(A.5) into Eq. (A.2) we get:

$$\begin{aligned}&i\int _{-\infty }^{0} dt\, e^{\eta t} \mathrm {Tr}[ j_{x}(-t), \mathcal {X} ]\rho _{\beta } \nonumber \\&\quad = -\int _{-\infty }^{0} dt\, e^{\eta t} \mathrm {Tr}\, \Delta _{x} \rho _{\beta } + i \int _{-\infty }^{0} dt\, e^{\eta t} \int _{t}^{0} ds\, \mathrm {Tr}\, [ \mathcal {J}(s), j_{x} ] \rho _{\beta } \nonumber \\&\quad = -\frac{1}{\eta } \mathrm {Tr}\, \Delta _{x} \rho _{\beta } + i \int _{-\infty }^{0} ds\, \int _{-\infty }^{s} dt\, e^{\eta t} \mathrm {Tr}\, [ \mathcal {J}(s), j_{x} ] \rho _{\beta }\nonumber \\&\quad = \frac{1}{\eta } \Big [ -\mathrm {Tr}\, \Delta _{x} \rho _{\beta } + i\int _{-\infty }^{0} ds\, e^{\eta s} \mathrm {Tr}\, [ \mathcal {J}(s), j_{x} ] \rho _{\beta } \Big ]. \end{aligned}$$
(A.6)

By translation invariance, the above expression does not depend on x. Thus, the right-hand side of Eq. (A.6) reproduces Eq. (2.6), for \(p = 0\) and \(\eta \rightarrow 0^{+}\) (notice that \(\hat{j}_{0}\equiv \mathcal {J}\)). In general, \(p\ne 0\) allows to take into account a space modulation of the external field.

Appendix B: On the Equivalence Between Thermal and Canonical Drude Weight

In this appendix we discuss the equivalence between a suitably regularized version of the thermal Drude weight, and the canonical Drude weight. Given two operators AB, we define their Kubo scalar product as:

$$\begin{aligned} \langle A B\rangle ^{K}_{\beta ,L} := \int _{0}^{\beta } dx_{0}\, \langle A(-ix_{0}) B \rangle _{\beta ,L}. \end{aligned}$$
(B.1)

We then notice that:

$$\begin{aligned} i\partial _{t} \langle A(t) B \rangle ^{K}_{\beta ,L} = \langle [ A(t), B ] \rangle _{\beta ,L}. \end{aligned}$$
(B.2)

Therefore, one formally has:

$$\begin{aligned} \widetilde{D}^{\text {(Th)}} _\beta= & {} \lim _{t\rightarrow \infty } \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J}(t) \mathcal {J} \rangle ^{K}_{\beta , L} \nonumber \\= & {} \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J} \mathcal {J}\rangle _{\beta , L}^{K} - i \int _{0}^{\infty } ds\, \lim _{L\rightarrow \infty } \frac{1}{L}\langle [ \mathcal {J}(s), \mathcal {J} ] \rangle _{\beta ,L} \nonumber \\\equiv & {} \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J} \mathcal {J}\rangle _{\beta , L}^{K} + i \int _{-\infty }^{0} ds\, \lim _{L\rightarrow \infty } \frac{1}{L} \langle [ \mathcal {J}(s), \mathcal {J} ] \rangle _{\beta , L}.\nonumber \end{aligned}$$

The main problem in making sense of the above identity is the existence of the time integration: for nonintegrable systems, proving that the integral converges is a very hard open problem. Therefore, let us introduce the following regularized version of the thermal Drude weight, at positive and zero temperature:

$$\begin{aligned} \widehat{D}^{\text {(Th)}} _\beta= & {} \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J} \mathcal {J}\rangle ^{K}_{\beta , L} + \lim _{\eta \rightarrow 0^{+}}i \int _{-\infty }^{0} ds\, e^{\eta s} \lim _{L\rightarrow \infty } \frac{1}{L} \langle [ \mathcal {J}(s), \mathcal {J} ] \rangle _{\beta ,L}\nonumber \\ \widehat{D}^{\text {(Th)}} _\infty= & {} \lim _{\beta , L\rightarrow \infty }\frac{1}{L} \langle \mathcal {J} \mathcal {J}\rangle ^{K}_{\beta , L} + \lim _{\eta \rightarrow 0^{+}}i \int _{-\infty }^{0} ds\, e^{\eta s} \lim _{\beta , L\rightarrow \infty } \frac{1}{L}\langle [ \mathcal {J}(s), \mathcal {J} ] \rangle _{\beta ,L}. \end{aligned}$$
(B.3)

Of course, \(\widehat{D}^{\text {(Th)}} = \widetilde{D}^{\text {(Th)}}\) if the real-time correlations decay fast enough. Such time regularization plays the same role of the adiabatic factor in the derivation of Kubo formula, see Appendix A. This regularized version of the thermal Drude weight matches the canonical formulation, Eq. (2.9), provided one can show that

$$\begin{aligned} \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J} \mathcal {J} \rangle ^{K}_{\beta , L} = - \lim _{L\rightarrow \infty } \langle \Delta _{x} \rangle _{\beta ,L}. \end{aligned}$$
(B.4)

To prove Eq. (B.4), we proceed as follows. Consider the lattice continuity equation:

$$\begin{aligned} \partial _{t} \rho _{x}(t) + d_{x} j_{x}(t) = 0, \end{aligned}$$
(B.5)

with \(d_{x} j_{x} = j_{x} - j_{x-1}\) the discrete lattice derivative. In imaginary times, Eq. (B.5) reads:

$$\begin{aligned} i\partial _{x_{0}} \rho _{x}(-ix_{0}) + \partial _{x} j_{x}(-ix_{0}) = 0. \end{aligned}$$
(B.6)

Eq. (B.6) can be used to derive Ward identities for the current-current correlations, as follows. Let \(j_{0,x} \equiv \rho _{x}\), \(j_{1,x} \equiv j_{x}\). Recall:

$$\begin{aligned} \langle \mathbf{T}\, j_{0, x}(-ix_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}= & {} \theta (x_{0} - y_{0}) \langle j_{0, x}(-ix_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}\nonumber \\&+\,\theta (y_{0} - x_{0}) \langle j_{\nu , 0}(-iy_{0}) j_{0, x}(-ix_{0}) \rangle _{\beta ,L}\;; \end{aligned}$$
(B.7)

therefore, using the continuity equation Eq. (B.6):

$$\begin{aligned} i\partial _{x_{0}}\langle \mathbf{T}\, j_{0, x}(-ix_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}= & {} \langle \mathbf{T}\, i\partial _{x_{0}}j_{0, x}(-ix_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}\nonumber \\&+\,i\langle [ j_{0, x}\, , j_{\nu , 0} ] \rangle _{\beta ,L} \delta (x_{0} - y_{0})\nonumber \\\equiv & {} -\langle \mathbf{T}\, \partial _{x}j_{1, x}(-ix_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}\nonumber \\&+\,i\langle [ j_{0, x}\, , j_{\nu , 0} ] \rangle _{\beta ,L} \delta (x_{0} - y_{0}). \end{aligned}$$
(B.8)

Now, consider the Fourier transform:

$$\begin{aligned} \langle \mathbf{T}\, \hat{j}_{\mu ,\mathbf{p}}\,; \hat{j}_{\nu ,-\mathbf{p}} \rangle _{\beta , L}\equiv & {} \frac{1}{\beta } \int _{0}^{\beta } d x_{0} \int _{0}^{\beta } d y_{0}\,e^{-ip_{0}(x_{0} - y_{0})} \nonumber \\&\times \,\sum _{x = -L/2}^{L/2} e^{-ipx} \langle \mathbf{T}\, j_{\mu , x}(-i x_{0})\,; j_{\nu , 0}(-i y_{0}) \rangle _{\beta , L}, \end{aligned}$$
(B.9)

with \(\mathbf{T}\) the fermionic time ordering, and \(\mathbf{p}= (p_{0}, p) \in \frac{2\pi }{\beta } \mathbb {Z} \times \frac{2\pi }{L} \mathbb {Z}\). In Eq. (B.9), the \(x_{0}, y_{0}\) integrations have to be understood as integrals over circles of length \(\beta \) (the imaginary time evolution of the current operators is extended periodically outside of \([0, \beta )\)). We have, integrating by parts the time-derivative:

$$\begin{aligned}&p_{0}\langle \mathbf{T}\, \hat{j}_{0,\mathbf{p}}\,; \hat{j}_{\nu ,-\mathbf{p}} \rangle _{\beta ,L} \\&\quad = \frac{1}{\beta } \int _{0}^{\beta } d x_{0} \int _{0}^{\beta } d y_{0}\, p_{0}e^{-ip_{0}(x_{0} - y_{0})}\sum _{x} e^{-ipx} \langle \mathbf{T}\, j_{0, x}(-i x_{0})\,; j_{\nu , 0}(-iy_{0}) \rangle _{\beta ,L}\\&\quad = \frac{1}{\beta } \int _{0}^{\beta } d x_{0}\, \int _{0}^{\beta } d y_{0}\, (i\partial _{x_{0}} e^{-ip_{0}(x_{0} - y_{0})})\sum _{x} e^{-ipx} \langle \mathbf{T}\, j_{0, x}(-ix_{0})\,; j_{\nu , 0}(-i y_{0}) \rangle _{\beta ,L}\\&\quad = -\frac{1}{\beta } \int _{0}^{\beta } dx_{0} \int _{0}^{\beta } dy_{0}\, e^{-ip_{0}(x_{0} - y_{0})} \sum _{x} e^{-ipx} i\partial _{x_{0}}\langle \mathbf{T}\, j_{0, x}(-i x_{0})\,; j_{\nu , 0}(-i y_{0}) \rangle _{\beta ,L}. \end{aligned}$$

Then, thanks to the continuity equation (B.5), we get:

$$\begin{aligned} p_{0}\langle \mathbf{T}\, \hat{j}_{0,\mathbf{p}}\,; \hat{j}_{\nu ,-\mathbf{p}} \rangle _{\beta ,L} = (1 - e^{-ip}) \langle \mathbf{T}\, \hat{j}_{1,\mathbf{p}}\,; \hat{j}_{\nu , -\mathbf{p}} \rangle _{\beta ,L} - i\sum _{x} e^{-ipx} \langle [ j_{0, x}\, , j_{\nu , 0} ] \rangle _{\beta ,L}. \end{aligned}$$
(B.10)

Let \(\nu = 1\), and set \(p_{0} = 0\), \(p_{1}\ne 0\). Eq. (B.10) implies:

$$\begin{aligned} \begin{aligned} (1 - e^{-ip}) \langle \mathbf{T}\, \hat{j}_{1,(0,p)}\,; \hat{j}_{1, (0,-p)} \rangle _{\beta ,L}&= i\sum _{x} e^{-ipx} \langle [ j_{0, x}\, , j_{1, 0} ] \rangle _{\beta ,L} \\&= \frac{\tau }{2}(1 - e^{-ip}) \langle a^{+}_{1}a^-_{0} + a^{+}_{0}a^-_{1}\rangle _{\beta ,L}. \end{aligned} \end{aligned}$$
(B.11)

Now, notice that \(\langle \mathbf{T}\, \hat{j}_{1,\mathbf{0}}\,; \hat{j}_{1,\mathbf{0}} \rangle _{\beta ,L} = L^{-1}\langle \mathcal {J} \mathcal {J}\rangle ^{K}_{\beta ,L}\). Hence, from Eq. (B.11), recalling Eq. (A.4), and setting \(\langle \cdot \rangle _{\beta } \equiv \lim _{L\rightarrow \infty } \langle \cdot \rangle _{\beta ,L}\):

$$\begin{aligned} \lim _{L\rightarrow \infty } \frac{1}{L}\langle \mathcal {J} \mathcal {J}\rangle ^{K}_{\beta ,L} = \lim _{p\rightarrow 0}\langle \mathbf{T}\, \hat{j}_{1,(0,p)}\,; \hat{j}_{1, (0,-p)} \rangle _{\beta } = \frac{\tau }{2}\langle a^{+}_{1}a_{0} + a^{+}_{0}a_{1}\rangle _{\beta } \equiv -\langle \Delta _{x} \rangle _{\beta }, \end{aligned}$$
(B.12)

which proves Eq. (B.4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastropietro, V., Porta, M. Canonical Drude Weight for Non-integrable Quantum Spin Chains. J Stat Phys 172, 379–397 (2018). https://doi.org/10.1007/s10955-018-1994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1994-0

Keywords

Navigation