Skip to main content
Log in

Mean-Field Limit and Phase Transitions for Nematic Liquid Crystals in the Continuum

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss thermotropic nematic liquid crystals in the mean-field regime. In the first part of this article, we rigorously carry out the mean-field limit of a system of N rod-like particles as \(N\rightarrow \infty \), which yields an effective ‘one-body’ free energy functional. In the second part, we focus on spatially homogeneous systems, for which we study the associated Euler–Lagrange equation, with a focus on phase transitions for general axisymmetric potentials. We prove that the system is isotropic at high temperature, while anisotropic distributions appear through a transcritical bifurcation as the temperature is lowered. Finally, as the temperature goes to zero we also prove, in the concrete case of the Maier–Saupe potential, that the system converges to perfect nematic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Ball, J., Majumdar, A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Tracts on Probability and Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1968)

    Google Scholar 

  4. Brezis, H.: Functional Analysis Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  5. Caglioti, E., Lions, P., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys. 143, 501–525 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cicalese, M., De Simone, A., Zeppieri, C.: Discrete-to-continuum limits for strain-alignment-coupled systems: magnetostrictive solids, ferroelectric crystals and nematic elastomers. Netw. Heterog. Media 4, 667–708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Kevrekidis, I., Titi, E.: Asymptotic states of a Smoluchowski equation. Arch. Ration. Mech. Anal. 174(3), 365–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M., Rabinowitz, P.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Gennes, P., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs in Physics, vol. 83, 2nd edn. Oxford University Press, Oxford (1993)

    Google Scholar 

  10. Disertori, M., Giuliani, A.: The nematic phase of a system of long hard rods. Comm. Math. Phys. 323(1), 143–175 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ericksen, J.: Equilibrium theory of liquid crystals. Adv. Liq. Cryst. 2, 233–298 (1976)

    Article  Google Scholar 

  12. Ericksen, J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fannes, M., Spohn, H., Verbeure, A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fatkullin, I., Slastikov, V.: Critical points of the Onsager functional on a sphere. Nonlinearity 18(6), 2565–2580 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Frank, F.: I. Liquid crystals. On the theory of liquid crystals. Discus. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  16. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with coulomb two-body interaction. Comm. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Giuliani, A., Mastropietro, V., Toninelli, F.: Height fluctuations in interacting dimers. Ann. Inst. H. Poincaré Probab. Statist. 53(1), 98–168, (2017)

  18. Gruber, C., Tamura, H., Zagrebnov, V.: Berezinskii–Kosterlitz–Thouless order in two-dimensional \(O(2)\)-ferrofluid. J. Stat. Phys. 106(5), 875–893 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, J., Luo, Y., Wang, W., Zhang, P., Zhang, Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215(3), 741–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heilmann, O., Lieb, E.: Theory of monomer-dimer systems. Comm. Math. Phys. 25, 190–232 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hewitt, E., Savage, L.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katriel, J., Kventsel, G., Luckhurst, G., Sluckin, T.: Free energies in the Landau and molecular field approaches. Liq. Cryst. 1, 337–355 (1986)

    Article  Google Scholar 

  23. Kiessling, M.K.H.: On the equilibrium statistical mechanics of isothermal classical self-gravitating matter. J. Stat. Phys. 55(1), 203–257 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Comm. Math. Phys. 298(1), 101–138 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lee, S., Meyer, R.: Computations of the phase equilibrium, elastic constants, and viscosities of a hardrod nematic liquid crystal. J. Chem. Phys. 84(6), 3443–3448 (1986)

    Article  ADS  Google Scholar 

  26. Lewin, M., Nam, P., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. de l’Ecole Polytech. 2, 65–115 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Lewin, M., Nam, P., Schlein, B.: Derivation of Hartree’s theory for generic mean-field Bose gases. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieb, E., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  29. Lieb, E., Solovej, J., Seiringer, R., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, vol. 35. Springer, New York (2005)

    MATH  Google Scholar 

  30. Lin, F., Liu, C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Lions, P.-L., Majda, A.: Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53, 76–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loomis, L., Sternberg, S.: Advanced Calculus. Jones and Barlett, Boston (1990). revised edition

    MATH  Google Scholar 

  33. Maier, W., Saupe, A.: Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforschg. 13, 564–566 (1958)

    ADS  Google Scholar 

  34. Maier, W., Saupe, A.: Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil I. Z. Naturforschg. 14, 882–889 (1959)

    ADS  Google Scholar 

  35. Maier, W., Saupe, A.: Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II. Z. Naturforschg. 15, 287–292 (1960)

    ADS  Google Scholar 

  36. Majumdar, A., Zarnescu, A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane–Emden equation. J. Stat. Phys. 29(3), 561–578 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  38. Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 51, 627–659 (1949)

    Article  ADS  Google Scholar 

  39. Oseen, C.: The theory of liquid crystals. Trans. Faraday Soc. 29(140), 883–899 (1933)

    Article  MATH  Google Scholar 

  40. Petz, D., Raggio, G., Verbeure, A.: Asymptotics of Varadhan-type and the Gibbs variational principle. Comm. Math. Phys. 121(2), 271–282 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Raggio, G., Werner, R.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  42. Robinson, D., Ruelle, D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288–300 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Romano, S., Zagrebnov, V.: Orientational ordering transition in a continuous-spin ferrofluid. Physica A 253, 483–497 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation. Preprint, 2015. http://arxiv.org/abs/1506.05263

  45. Ruelle, D.: Statistical Mechanics: Rigorous Results. Imperial College Press, London (1999)

    Book  MATH  Google Scholar 

  46. Simon, B.: A remark on Dobrushin’s uniqueness theorem. Commun. Math. Phys. 68(2), 183–185 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Vollmer, M.A.C.: Critical points and bifurcations of the three-dimensional Onsager model for liquid crystals. Preprint, 2015. arXiv:1509.02469

Download references

Acknowledgements

The authors would like to thank Margherita Disertori for very helpful discussions. They are also indebted to an anonymous referee who pointed out a mistake in an earlier version of the manuscript, and helped improve the general presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bachmann.

Additional information

Dedicated to Charles-Edouard Pfister, a mentor and a friend.

Appendix A: Laplace’s Method

Appendix A: Laplace’s Method

Lemma 15

Let \(f\in C^3 ([0,\pi /2];\mathbb {R})\) be such that 0 is its unique global minimum. Assume that \(f''(0)\ne 0\). Then the following holds.

  1. (a)

    As \(\beta \rightarrow \infty \),

    $$\begin{aligned} \int _{0}^{\pi /2}\mathrm {e}^{-\beta f(\theta ) }\sin \theta \,\mathrm {d}{\theta } =\mathrm {e}^{-\beta f(0) }\left[ \frac{1}{f''(0)}\beta ^{-1}-\frac{1 }{2}\sqrt{\frac{\pi }{2}}\frac{f'''(0)}{f''(0)^{5/2}}\beta ^{-3/2}+o(\beta ^{-3/2})\right] . \end{aligned}$$
    (35)
  2. (b)

    Then,

    $$\begin{aligned} \lim _{\beta \rightarrow \infty }\langle g \rangle _\beta ^f=g(0). \end{aligned}$$
    (36)
  3. (c)

    If \(g\in C^2 ([0,\pi /2];\mathbb {R})\) we have, as \(\beta \rightarrow \infty \),

    $$\begin{aligned} \langle g \rangle _\beta ^f=g(0)+\sqrt{\frac{\pi }{2}} \frac{g'(0)}{f''(0)^{1/2}}\beta ^{-1/2} +\left[ \frac{g''(0)}{f''(0)}+\frac{3\pi -16}{12}\frac{g'(0)f'''(0)}{f''(0)^2} \right] \beta ^{-1}+o(\beta ^{-1}). \end{aligned}$$
    (37)

Proof

  1. (a)

    We first write

    $$\begin{aligned} \int _{0}^{\pi /2}\mathrm {e}^{-\beta f(\theta ) }\sin \theta \,\mathrm {d}{\theta } = \mathrm {e}^{-\beta f(0) } \int _{0}^{\pi /2}\mathrm {e}^{-\beta (f(\theta ) -f(0))}\sin \theta \,\mathrm {d}{\theta }. \end{aligned}$$

    By assumption, there is \(\epsilon >0\) such that, for all \(0<\theta <\epsilon \), \(f(\theta )- f(0) \ge \frac{1}{4}f''(0)\epsilon ^2\). Hence,

    $$\begin{aligned}&\int _\epsilon ^{\pi /2}\mathrm {e}^{-\beta (f(\theta ) - f(0))}\sin \theta \,\mathrm {d}\theta \le \bigg (\sup _{\theta \in [\epsilon ,\pi /2]}\mathrm {e}^{-\frac{\beta }{2} (f(\theta ) - f(0))}\bigg )\\&\times \int _\epsilon ^{\pi /2}\mathrm {e}^{-\frac{\beta }{2} (f(\theta ) - f(0))}\sin \theta \,\mathrm {d}\theta \le C \mathrm {e}^{-\frac{\beta }{8} f''(0)\epsilon ^2}, \end{aligned}$$

    where C is independent of \(\beta ,\epsilon \). Let now \(\epsilon = \beta ^{-1/4}\). Then \(\beta \epsilon ^2 = \beta ^{1/2}\rightarrow \infty \) and the above integral vanishes exponentially as \(\beta \rightarrow \infty \). In a neighbourhood of the minimum, Taylor expansions yield

    $$\begin{aligned}&\int _0^\epsilon \mathrm {e}^{-\beta (f(\theta ) - f(0))}\sin \theta \,\mathrm {d}\theta \!= \!\int _0^\epsilon \mathrm {e}^{-\frac{\beta }{2}f''(0)\theta ^2}\left( 1 \!-\! \frac{\beta }{6}f'''(0) \theta ^3 \!+\! \beta o(\theta ^3)\right) \left( \theta \!+\! o(\theta ^2)\right) \,\mathrm {d}\theta \\&\quad = \beta ^{-1/2}\int _0^{\beta ^{1/2}\epsilon } \mathrm {e}^{-\frac{1}{2}f''(0)\zeta ^2}\left( \beta ^{-1/2}\zeta - \beta ^{-1} \frac{f'''(0)}{6} \zeta ^4 + o(\beta ^{-1})\right) \,\mathrm {d}\zeta , \end{aligned}$$

    where we let \(\theta = \beta ^{-1/2}\zeta \). Since \(\beta ^{1/2}\epsilon \rightarrow \infty \), the error in replacing the upper bound of integration by \(\infty \) is exponentially small indeed. The integrals can finally be carried out explicitly to yield (35).

  2. (b)

    Here again, we start by writing

    $$\begin{aligned} \langle g\rangle _\beta ^f = g(0) + \langle g - g(0)\rangle _\beta ^f = g(0) + \frac{\int _0^{\pi /2}\mathrm {e}^{-\beta (f(\theta )-f(0))}(g(\theta ) - g(0))\sin \theta \,\mathrm {d}\theta }{\int _0^{\pi /2}\mathrm {e}^{-\beta (f(\theta )-f(0))}\sin \theta \,\mathrm {d}\theta }. \end{aligned}$$
    (38)

    Proceeding as in (a), we can restrict our attention to \([0,\beta ^{-1/4})\) in the integrals. By continuity of g, for any \(\tilde{\epsilon }>0\), there is \(\beta <\infty \) such that \(\theta <\beta ^{-1/4}\) implies \(\vert g(\theta ) - g(0)\vert < \tilde{\epsilon }\). Hence,

    $$\begin{aligned} \big \vert \langle g\rangle _\beta ^f - g(0) \big \vert = \big \vert \langle g - g(0)\rangle _\beta ^f\big \vert \le \tilde{\epsilon }. \end{aligned}$$
  3. (c)

    We consider again (38). Proceeding as in (a), we expand the relevant part of the numerator as

    $$\begin{aligned}&\int _0^\epsilon \mathrm {e}^{-\beta (f(\theta )-f(0))}(g(\theta ) - g(0))\sin \theta \,\mathrm {d}\theta = \beta ^{-1/2}\int _0^{\beta ^{1/2}\epsilon } \mathrm {e}^{-\frac{1}{2}f''(0)\zeta ^2}\\&\qquad \times \left( g'(0)\zeta ^2 \beta ^{-1} + \frac{1}{2}g''(0)\zeta ^3\beta ^{-3/2} - \frac{1}{6}f'''(0)g'(0)\beta ^{-3/2}\zeta ^5 + o(\beta ^{-3/2})\right) \,\mathrm {d}\zeta \\&\quad = \sqrt{\frac{\pi }{2}}\frac{g'(0)}{f''(0)^{3/2}}\beta ^{-3/2} + \left[ \frac{g''(0)}{f''(0)^{2}} - \frac{4}{3}\frac{g'(0)f'''(0)}{f''(0)^{3}}\right] \beta ^{-2} + o(\beta ^{-2}). \end{aligned}$$

    Combining this with the expansion (35), we obtain the claim. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, S., Genoud, F. Mean-Field Limit and Phase Transitions for Nematic Liquid Crystals in the Continuum. J Stat Phys 168, 746–771 (2017). https://doi.org/10.1007/s10955-017-1829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1829-4

Keywords

Navigation