Skip to main content
Log in

Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study global minimizers of a continuum Landau–De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2, to a global minimizer predicted by the Oseen–Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen–Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau–De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau–De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F.J., Lieb, E.H.: Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds. Ann. Math. (2) 128(3), 483–530 (1988)

    Google Scholar 

  2. Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystals (in preparation)

  3. Bethuel F., Brezis H., Hélein F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1(2), 123–148 (1993)

    Article  MATH  Google Scholar 

  4. Bethuel, F., Chiron, D.: Some questions related to the lifting problem in Sobolev spaces. Perspectives in nonlinear partial differential equations, Contemp. Math., 446. Amer. Math. Soc., Providence, RI, 125–152, 2007

  5. Brezis H.: The interplay between analysis and topology in some nonlinear PDE problems. Bull. Am. Math. Soc. (N.S.) 40(2), 179–201 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Y., Lin F.: Remarks on approximate harmonic maps. Comment. Math. Helv. 70(1), 161–169 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis T., Gartland E.: Finite element analysis of the Landau–De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35, 336–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ericksen J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1990)

    Article  MathSciNet  Google Scholar 

  9. Evans L.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  10. Fraenkel, L.E.: On regularity of the boundary in the theory of Sobolev spaces. Proc. Lond. Math. Soc. (3) 39(3), 385–427 (1979)

  11. Frank F.C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 1 (1958)

    Article  Google Scholar 

  12. Friedman A.: On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations. J. Math. Mech. 7, 43–59 (1958)

    MATH  MathSciNet  Google Scholar 

  13. De Gennes P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1974)

    Google Scholar 

  14. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983

  15. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg, 224, 2, 1977

  16. Hardt R., Lin F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213(4), 575–593 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardt R., Kinderlehrer D., Lin F.H.: Existence and partial regularity of static liquid crystals configurations. Comm. Math. Phys. 105, 547–570 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kato T.: Perturbation theory for linear operators, rundlehren der Mathematischen Wissenschaften, Band 132. Springer, Berlin (1976)

    Google Scholar 

  19. Lin F.H.: On nematic liquid crystals with variable degree of orientation. Comm. Pure Appl. Math. 44(4), 453–468 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lin F.H., Liu C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)

    MathSciNet  Google Scholar 

  21. Lin F., Poon C.: On Ericksen’s model for liquid crystals. J. Geom. Anal. 4(3), 379–392 (1994)

    MATH  MathSciNet  Google Scholar 

  22. Lin F., Riviére T.: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. (JEMS) 1(3), 237–311 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Majumdar, A.: Equilibrium order parameters of liquid crystals in the Landau–De Gennes theory, preprint, 2008

  24. De Matteis G., Virga E.G.: Tricritical points in biaxial liquid crystal phases. Phys. Rev. E 71, 061703 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Mkaddem S., Gartland E.C.: Fine structure of defects in radial nematic droplets. Phys. Rev. E. 62, 6694–6705 (2000)

    Article  ADS  Google Scholar 

  26. Moser R.: Partial Iegularity for Harmonic Maps and Related Problems. World Scientific Publishing, Hackensack (2005)

    Google Scholar 

  27. Mottram, N.J., Newton, C.: Introduction to Q-tensor Theory. University of Strathclyde, Department of Mathematics, Research Report, 10 (2004)

  28. Nomizu K.: Characteristic roots and vectors of a differentiable family of symmetric matrices. Linear Multilinear Algebra 1, 159–162 (1973)

    Article  MathSciNet  Google Scholar 

  29. Priestley E.B., Wojtowicz P.J., Sheng P.: Intorduction to Liquid Crystals. Plenum, New York (1975)

    Google Scholar 

  30. Rosso R., Virga E.: Metastable nematic hedgehogs. J. Phys. A Math. Gen. 29, 4247–4264 (1996)

    Article  MATH  ADS  Google Scholar 

  31. Schoen, R.: Analytic Aspects of the Harmonic Map Problem. Seminar on Nonlinear Partial Differential Equations. (Chern, S.S. Ed. MSRI Publications 2, Springer, Heidelberg, 1984

  32. Schoen R., Uhlenbeck K.: A regularity theory for harmonic mappings. J. Diff. Geom. 17, 307–335 (1982)

    MATH  MathSciNet  Google Scholar 

  33. Taylor, M.E.: Partial Differential Equations. III. Nonlinear Equations. Applied Mathematical Sciences, 117. Springer, New York, 1997

  34. Virga E.G.: Variational Theories for Liquid Crystals. Chapman and Hall, London (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apala Majumdar.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, A., Zarnescu, A. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond. Arch Rational Mech Anal 196, 227–280 (2010). https://doi.org/10.1007/s00205-009-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0249-2

Keywords

Navigation