Skip to main content
Log in

Local Universality in Biorthogonal Laguerre Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider n particles \(0\le x_1<x_2< \cdots < x_n < +\infty \), distributed according to a probability measure of the form

$$\begin{aligned} \frac{1}{Z_n}\prod _{1\le i <j \le n}(x_j-x_i)\prod _{1\le i <j \le n}(x_j^{\theta }-x_i^{\theta })\prod _{j=1}^nx_j^\alpha e^{-x_j}\,\mathrm {d}x_j, \quad \alpha >-1,\quad \theta >0, \end{aligned}$$

where \(Z_n\) is the normalization constant. This distribution arises in the context of modeling disordered conductors in the metallic regime, and can also be realized as the distribution for squared singular values of certain triangular random matrices. We give a double contour integral formula for the correlation kernel, which allows us to establish universality for the local statistics of the particles, namely, the bulk universality and the soft edge universality via the sine kernel and the Airy kernel, respectively. In particular, our analysis also leads to new double contour integral representations of scaling limits at the origin (hard edge), which are equivalent to those found in the classical work of Borodin. We conclude this paper by relating the correlation kernels to those appearing in recent studies of products of M Ginibre matrices for the special cases \(\theta =M\in \mathbb {N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P., Wang, D.: Random matrix minor processes related to percolation theory. Random Matrices Theory Appl. 2, 1350008 (2013)

    Article  MathSciNet  Google Scholar 

  2. Akemann, G., Ipsen, J.R., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    Article  ADS  Google Scholar 

  3. Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices. arXiv:1502.01667 (preprint)

  4. Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  5. Alexeev, N., Götze, F., Tikhomirov, A.: Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 50, 121–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  7. Banica, T., Belinschi, S.T., Capitaine, M., Collins, B.: Free Bessel laws. Can. J. Math. 63, 3–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beals, R., Szmigielski, J.: Meijer \(G\)-functions: a gentle introduction. Not. Am. Math. Soc. 60, 866–872 (2013)

    Article  MathSciNet  Google Scholar 

  9. Biane, P.: Processes with free increments. Math. Z. 227, 143–174 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1999)

    Article  MATH  ADS  Google Scholar 

  11. Carlitz, L.: A note on certain biorthogonal polynomials. Pac. J. Math. 24, 425–430 (1968)

    Article  MATH  Google Scholar 

  12. Cheliotis, D.: Triangular random matrices and biorthogonal ensembles. arXiv:1404.4730 (preprint)

  13. Claeys, T., Romano, S.: Biorthogonal ensembles with two-particle interactions. Nonlinearity 27, 2419–2443 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Coussement, E., Coussement, J., Van Assche, W.: Asymptotic zero distribution for a class of multiple orthogonal polynomials. Trans. Am. Math. Soc. 360, 5571–5588 (2008)

    Article  MATH  Google Scholar 

  15. Desrosiers, P., Forrester, P.J.: A note on biorthogonal ensembles. J. Approx. Theory 152, 167–187 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dykema, K., Haagerup, U.: DT-operators and decomposability of Voiculescu’s circular operator. Am. J. Math. 126, 121–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Based, in Part, on Notes left by Harry Bateman, vol. 3. McGraw-Hill Book Company, Inc., New York (1955)

    Google Scholar 

  18. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  20. Forrester, P.J.: Eigenvalue statistics for product complex Wishart matrices. J. Phys. A 47, 345202 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. Forrester, P.J., Liu, D.-Z.: Raney distributions and random matrix theory. J. Stat. Phys. 158, 1051–1082 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  22. Forrester, P.J., Wang, D.: Muttalib-Borodin ensembles in random matrix theory—realisations and correlation functions. arXiv:1502.07147 (preprint)

  23. Genin, R., Calvez, L.-C.: Sur les fonctions génératrices de certains polynômes biorthogonaux. C. R. Acad. Sci. Paris Sér. A–B 268, A1564–A1567 (1969)

    MathSciNet  Google Scholar 

  24. Genin, R., Calvez, L.-C.: Sur quelques propriéetés de certains polynômes biorthogonaux. C. R. Acad. Sci. Paris Sér. A–B 269, A33–A35 (1969)

    MathSciNet  Google Scholar 

  25. Haagerup, U., Möller, S.: The law of large numbers for the free multiplicative convolution. In: Operator Algebra and Dynamics. Springer Proceedings in Mathematics & Statistics, vol. 58, pp. 157–186. Springer, Heidelberg (2013)

  26. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  27. Johansson, K.: Random Matrices and Determinantal Processes. Mathematical Statistical Physics (Lecture Notes of the Les Houches Summer School). Elsevier, Amsterdam (2006)

    Google Scholar 

  28. Kieburg, M., Kuijlaars, A.B.J., Stivigny, D.: Singular value statistics of matrix products with truncated unitary matrices. arXiv:1501.03910 (preprint), to appear in Int. Math. Res. Notices

  29. Konhauser, J.D.E.: Some properties of biorthogonal polynomials. J. Math. Anal. Appl. 11, 242–260 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Konhauser, J.D.E.: Biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 21, 303–314 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kuijlaars, A.B.J.: Universality. In: Akemann, G. (ed.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

    Google Scholar 

  32. Kuijlaars, A.B.J., Stivigny, D.: Singular values of products of random matrices and polynomial ensembles. Random Matrices Theory Appl. 3, 1450011 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kuijlaars, A.B.J., Zhang, L.: Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759–781 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Liu, D.-Z., Song, C., Wang, Z.-D.: On explicit probability densities associated with Fuss-Catalan numbers. Proc. Am. Math. Soc. 139, 3735–3738 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Liu, D.-Z., Wang, D., Zhang, L.: Bulk and soft-edge universality for singular values of products of Ginibre random matrices. arXiv:1412.6777 (preprint), to appear in Ann. Inst. Henri Poincaré Probab. Stat

  36. Lueck, T., Sommers, H.-J., Zirnbauer, M.R.: Energy correlations for a random matrix model of disordered bosons. J. Math. Phys. 47, 103304 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. Luke, Y.L.: The Special Functions and Their Approximations. Academic Press, New York (1969)

    MATH  Google Scholar 

  38. Muttalib, K.A.: Random matrix models with additional interactions. J. Phys. A 28, L159–164 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  39. Neuschel, T.: Plancherel-Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss-Catalan distribution. Random Matrices Theory Appl. 3, 1450003 (2014)

    Article  MathSciNet  Google Scholar 

  40. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  41. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010). Print companion to [DLMF]

  42. Penson, K.A., Życzkowski, K.: Product of Ginibre matrices: Fuss-Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)

    Article  ADS  Google Scholar 

  43. Prabhakar, T.R.: On a set of polynomials suggested by Laguerre polynomials. Pac. J. Math. 35, 213–219 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  44. Preiser, S.: An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order. J. Math. Anal. Appl. 4, 38–64 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  45. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Spencer, L., Fano, U.: Penetration and diffusion of X-rays. Calculation of spatial distribution by polynomial expansion. J. Res. Nat. Bur. Stand. 46, 446–461 (1951)

    Article  Google Scholar 

  47. Srivastava, H.M.: On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 49, 489–492 (1973)

    Article  MATH  Google Scholar 

  48. Strahov, E.: Differential equations for singular values of products of Ginibre random matrices. J. Phys. A 47, 325203 (2014)

    Article  MathSciNet  Google Scholar 

  49. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Tracy, C.A., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Van Assche, W., Yakubovich, S.B.: Multiple orthogonal polynomials associated with Macdonald functions. Integr. Transform. Spec. Funct. 9, 229–244 (2000)

    Article  MATH  Google Scholar 

  53. Van Assche, W.: Mehler-Heine asymptotics for multiple orthogonal polynomials. arXiv:1408.6140 (preprint)

  54. Zhang, L.: A note on the limiting mean distribution of singular values for products of two Wishart random matrices. J. Math. Phys. 54, 083303 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  55. Zhang, L., Román, P.: The asymptotic zero distribution of multiple orthogonal polynomials associated with Macdonald functions. J. Approx. Theory 163, 143–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Peter Forrester and Dong Wang for helpful communications and for providing me with an early copy of the preprint [22] on a related study of the Laguerre biorthogonal ensemble upon completion of the present work. The author also thanks the anonymous referees for their careful reading and constructive suggestions. This work is partially supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. SHH1411007) and by Grant EZH1411513 from Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun Zhang.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Appendix: The Meijer G-Function

Appendix: The Meijer G-Function

For convenience of the readers, we give a brief introduction to the Meijer G-function in this appendix, which includes its definition and some properties used in this paper.

By definition, the Meijer G-function is given by the following contour integral in the complex plane:

$$\begin{aligned} \left. G^{m,n}_{p,q}\left( {\begin{array}{c} a_1,\ldots ,a_p \\ b_1,\ldots ,b_q \end{array}}\right| z\right) =\frac{1}{2\pi i}\int _\gamma \frac{\prod _{j=1}^m\Gamma (b_j+u)\prod _{j=1}^n\Gamma (1-a_j-u)}{\prod _{j=m+1}^q\Gamma (1-b_j-u)\prod _{j=n+1}^p\Gamma (a_j+u)}z^{-u} \,\mathrm {d}u,\quad \end{aligned}$$
(4.1)

where \(\Gamma \) denotes the usual gamma function and the branch cut of \(z^{-u}\) is taken along the negative real axis. It is also assumed that

  • \(0\le m\le q\) and \(0\le n \le p\), where mnp and q are integer numbers;

  • The real or complex parameters \(a_1,\ldots ,a_p\) and \(b_1,\ldots ,b_q\) satisfy the conditions

    $$\begin{aligned} a_k-b_j \ne 1,2,3, \ldots , \quad \text {for }k=1,2,\ldots ,n\text { and }j=1,2,\ldots ,m, \end{aligned}$$

    i.e., none of the poles of \(\Gamma (b_j+u)\), \(j=1,2,\ldots ,m\) coincides with any poles of \(\Gamma (1-a_k-u)\), \(k=1,2,\ldots ,n\).

The contour \(\gamma \) is chosen in such a way that all the poles of \(\Gamma (b_j+u)\), \(j=1,\ldots ,m\) are on the left of the path, while all the poles of \(\Gamma (1-a_k-u)\), \(k=1,\ldots ,n\) are on the right, which is usually taken to go from \(-i\infty \) to \(i\infty \). For more details, we refer to the references [37, 41].

Most of the known special functions can be viewed as special cases of the Meijer G-functions. For instance, with the generalized hypergeometric function \({\; }_p F_q\) given in (3.9), one has [41, formula 16.18.1]

$$\begin{aligned} \left. \mathop {{{}_{p}F_{q}}}\nolimits \!\left( {\begin{array}{c} a_{1},\dots ,a_{p}\\ b_{1},\dots ,b _{q} \end{array}}\right| z\right) =\frac{\prod \limits _{k=1}^{q}\Gamma (b_k)}{\prod \limits _{k=1}^{p}\Gamma (a_k)} G^{1,p}_{p,q+1}\left. \left( {\begin{array}{c} 1-a_1,\ldots ,1-a_p \\ 0, 1-b_1,\ldots ,1-b_q \end{array}}\right| -z \right) . \end{aligned}$$
(4.2)

This, together with the fact that

$$\begin{aligned} \left. \left. z^{\alpha }G^{m,n}_{p,q}\left( {\begin{array}{c} a_1,\ldots ,a_p \\ b_1,\ldots ,b_q \end{array}}\right| z\right) =G^{m,n}_{p,q}\left( {\begin{array}{c} a_1+\alpha ,\ldots ,a_p+\alpha \\ b_1+\alpha ,\ldots ,b_q+\alpha \end{array}}\right| z\right) , \end{aligned}$$
(4.3)

gives us

$$\begin{aligned} x^\alpha e^{-x}=G^{1,0}_{0,1}\left. \left( {\begin{array}{c} - \\ \alpha \end{array}}\right| x\right) =\frac{1}{2\pi i}\int _\gamma \Gamma (\alpha +s)x^{-s}\,\mathrm {d}s. \end{aligned}$$
(4.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. Local Universality in Biorthogonal Laguerre Ensembles. J Stat Phys 161, 688–711 (2015). https://doi.org/10.1007/s10955-015-1353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1353-3

Keywords

Navigation