Skip to main content
Log in

Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Akemann, Ipsen and Kieburg recently showed that the squared singular values of products of M rectangular random matrices with independent complex Gaussian entries are distributed according to a determinantal point process with a correlation kernel that can be expressed in terms of Meijer G-functions. We show that this point process can be interpreted as a multiple orthogonal polynomial ensemble. We give integral representations for the relevant multiple orthogonal polynomials and a new double contour integral for the correlation kernel, which allows us to find its scaling limits at the origin (hard edge). The limiting kernels generalize the classical Bessel kernels. For M = 2 they coincide with the scaling limits found by Bertola, Gekhtman, and Szmigielski in the Cauchy–Laguerre two-matrix model, which indicates that these kernels represent a new universality class in random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

  2. Akemann G., Burda Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A Math. Theor. 45, 465201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices, preprint. arXiv:1310.6395

  4. Akemann G., Ipsen J.R., Kieburg M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    Article  ADS  Google Scholar 

  5. Akemann G., Kieburg M., Wei L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A Math. Theor. 46, 275205 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Akemann G., Strahov E.: Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. J. Stat. Phys. 151, 987–1003 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Anderson G.W., Guionnet A., Zeitouni O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  8. Banica T., Belinschi S., Capitaine M., Collins B.: Free Bessel laws. Can. J. Math. 63, 3–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beals R., Szmigielski J.: Meijer G-functions: a gentle introduction. Not. Am. Math. Soc. 60, 866–872 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bertola M., Gekhtman M., Szmigielski J.: The Cauchy two-matrix model. Comm. Math. Phys. 287, 983–1014 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bertola M., Gekhtman M., Szmigielski J.: Cauchy biorthogonal polynomials. J. Approx. Theory 162, 832–867 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bertola M., Gekhtman M., Szmigielski J.: Cauchy–Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326(1), 111–144 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Borodin A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1999)

    Article  ADS  MATH  Google Scholar 

  14. Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schrödinger operators. In: Huber, P., Rosenblatt, M. (eds) Progress in Probability and Statistics, vol. 8. Birkhäuser, Boston (1985)

  15. Burda Z., Janik R.A., Waclaw B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010) (the extended version Acta Phys. Polon. B 42, 939–985 (2011))

  17. Coussement E., Coussement J., Van Assche W.: Asymptotic zero distribution for a class of multiple orthogonal polynomials. Trans. Am. Math. Soc. 360, 5571–5588 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Crisanti A., Paladin G., Vulpiani A.: Products of Random Matrices in Statistical Physics. Springer Series in Solid-State Sciences, vol. 104. Springer, Heidelberg (1993)

    Google Scholar 

  19. Daems E., Kuijlaars A.B.J.: A Christoffel–Darboux formula for multiple orthogonal polynomials. J. Approx. Theory 130, 188–200 (2004)

    MathSciNet  Google Scholar 

  20. Deift, P.: Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, Providence (1999)

  21. Flajolet P., Gourdon X., Dumas P.: Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144, 3–58 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Forrester P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  23. Furstenberg H., Kesten H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  24. Götze, F., Tikhomirov, A.: On the asymptotic spectrum of products of independent random matrices, preprint. arXiv:1012.2710

  25. Ipsen J.R.: Products of independent quaternion Ginibre matrices and their correlation functions. J. Phys. A Math. Theor. 46, 265201 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ismail M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98 University Press. Cambridge University Press, London (2005)

    Book  Google Scholar 

  27. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 4, 1003–1037 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Kuijlaars, A.B.J.: Multiple orthogonal polynomial ensembles. In: Arvesú, J., Marcellán, F., Martínez-Finkelshtein, A. (eds.) Recent Trends in Orthogonal Polynomials and Approximation Theory. Contemporary Mathematics, vol. 507, pp. 155–176 (2010)

  29. Kuijlaars, A.B.J.: Multiple orthogonal polynomials in random matrix theory. In: Bhatia, R. (ed.) Proceedings of the International Congress of Mathematicians, vol. III, Hyderabad, India, pp. 1417–1432 (2010)

  30. Luke Y.L.: The Special Functions and their Approximations. Academic Press, New York (1969)

    MATH  Google Scholar 

  31. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge. (2010) (Print companion to [DLMF])

  32. O’Rourke S., Soshnikov A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 81, 2219–2245 (2011)

    MathSciNet  Google Scholar 

  33. Penson K.A., K.: Product of Ginibre matrices: Fuss-Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)

    Article  ADS  Google Scholar 

  34. Tao, T.: Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

  35. Tracy C., Widom H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Tulino, A.M., Verdú, S.: Random Matrix Theory and Wireless Communications. Foundations and Trends in Communications and Information Theory, vol. 1, pp. 1–182. Now Publisher, Hanover (2004)

  37. Van Assche, W., Geronimo, J.S., Kuijlaars, A.B.J.: Riemann–Hilbert problems for multiple orthogonal polynomials. In: Bustoz J. et al. (eds.) Special Functions 2000: Current Perspectives and Future Directions. Kluwer, Dordrecht, pp. 23–59 (2001)

  38. Van Assche W., Yakubovich S.B.: Multiple orthogonal polynomials associated with Macdonald functions. Integral Transforms Spec. Funct. 9, 229–244 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang, L.: A note on the limiting mean distribution of singular values for products of two Wishart random matrices. J. Math. Phys. 54, 083303, 8 pp. (2013)

  40. Zhang L., Román P.: The asymptotic zero distribution of multiple orthogonal polynomials associated with Macdonald functions. J. Approx. Theory 163, 143–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno B. J. Kuijlaars.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuijlaars, A.B.J., Zhang, L. Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits. Commun. Math. Phys. 332, 759–781 (2014). https://doi.org/10.1007/s00220-014-2064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2064-3

Keywords

Navigation