Skip to main content
Log in

Level spacing distributions and the Bessel kernel

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Scaling models of randomN×N hermitian matrices and passing to the limitN→∞ leads to integral operators whose Fredholm determinants describe the statistics of the spacing of the eigenvalues of hermitian matrices of large order. For the Gaussian Unitary Ensemble, and for many others'as well, the kernel one obtains by scaling in the “bulk” of the spectrum is the “sine kernel”\(\frac{{\sin \pi (x - y)}}{{\pi (x - y)}}\). Rescaling the GUE at the “edge” of the spectrum leads to the kernel\(\frac{{Ai(x)Ai'(y) - Ai'(x)Ai(y)}}{{x - y}}\), where Ai is the Airy function. In previous work we found several analogies between properties of this “Airy kernel” and known properties of the sine kernel: a system of partial differential equations associated with the logarithmic differential of the Fredholm determinant when the underlying domain is a union of intervals; a representation of the Fredholm determinant in terms of a Painlevé transcendent in the case of a single interval; and, also in this case, asymptotic expansions for these determinants and related quantities, achieved with the help of a differential operator which commutes with the integral operator. In this paper we show that there are completely analogous properties for a class of kernels which arise when one rescales the Laguerre or Jacobi ensembles at the edge of the spectrum, namely

$$\frac{{J_\alpha (\sqrt x )\sqrt y J'_\alpha (\sqrt y ) - \sqrt x J'_\alpha (\sqrt x )J_\alpha (\sqrt y )}}{{2(x - y)}},$$

, whereJ α(z) is the Bessel function of order α. In the cases α=∓1/2 these become, after a variable change, the kernels which arise when taking scaling limits in the bulk of the spectrum for the Gaussian orthogonal and symplectic ensembles. In particular, an asymptotic expansion we derive will generalize ones found by Dyson for the Fredholm determinants of these kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, E.W.: The theory of theG-function. Quart. J. Pure and Appl. Math.31, 264–314 (1900)

    Google Scholar 

  2. Basor, E.L., Tracy, C.A., Widom, H.: Asymptotics of level spacing distributions for random matrices. Phys. Rev. Letts.69, 5–8 (1992)

    Google Scholar 

  3. Bowick, M.J., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Letts.B268, 21–28 (1991)

    Google Scholar 

  4. Bronk, B.V.: Exponential ensemble for random matrices. J. Math. Phys.6, 228–237 (1965)

    Google Scholar 

  5. Dyson, F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys.47, 171–183 (1976)

    Google Scholar 

  6. Dyson, F.J.: The Coulomb fluid and the fifth Painlevé transcendent. IASSNSS-HEP-92/43 preprint, to appear in the proceedings of a conference in honor of C.N. Yang, ed. S.-T. Yau

  7. Edelman, A.: Eigenvalues and Condition Numbers of Random Matrices. SIAM J. Matrix Anal. Appl.9, 543–560 (1988)

    Google Scholar 

  8. Edelman, A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Alg. and Its Appl.159, 55–80 (1991)

    Google Scholar 

  9. Erdélyi, A. (ed.): Higher Transcendental Functions. Vols. I and II. New York: McGraw-Hill 1953

    Google Scholar 

  10. Flaschka, H., Newell, A.C.: Monodromy- and Spectrum-Preserving Deformations I. Commun. Math. Phys.76, 65–116 (1980)

    Google Scholar 

  11. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys.B402 [FS], 709–728 (1993)

    Google Scholar 

  12. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Corrected and Enlarged Edition, San Diego: Academic 1980

    Google Scholar 

  13. Gromak, V.I.: Reducibility of Painlevé equations. Diff. Urav.20, 1674–1683 (1984)

    Google Scholar 

  14. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. RIMS, Kyoto Univ.18, 1137–1161 (1982)

    Google Scholar 

  15. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica1D, 80–158 (1980)

    Google Scholar 

  16. Kamien, R.D., Politzer, H.D., Wise, M.B.: Universality of random-matrix predictions for the statistics of energy levels. Phys. Rev. Letts.60, 1995–1998 (1988)

    Google Scholar 

  17. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables: IV. J. Phys. I France1, 1093–1108 (1991)

    Google Scholar 

  18. Mehta, M.L.: Random Matrices. 2nd edition, San Diego: Academic 1991

    Google Scholar 

  19. Mehta, M.L.: A non-linear differential equation and a Fredholm determinant. J. de Phys. I France2, 1721–1729 (1992)

    Google Scholar 

  20. Mehta, M.L., Mahoux, G.: Level spacing functions and non-linear differential equations. J. Phys. I France3, 697–715 (1993)

    Google Scholar 

  21. McCoy, B.M., Tracy, C.A., Wu, T.T.: Painlevé functions of the third kind.18, 1058–1092 (1977)

    Google Scholar 

  22. Moore, G.: Matrix models of 2D gravity and isomonodromic deformation. Prog. Theor. Physics Suppl. No.102, 255–285 (1990)

    Google Scholar 

  23. Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan60, 3298–3322 (1991)

    Google Scholar 

  24. Pastur, L.A.: On the universality of the level spacing distribution for some ensembles of random matrices. Letts. Math. Phys.25, 259–265 (1992)

    Google Scholar 

  25. Porter, C.E.: Statistical Theory of Spectra: Fluctuations, New York: Academic 1965

    Google Scholar 

  26. Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields, III, IV. Publ. RIMS Kyoto Univ.15, 577–629 (1979);15, 871–972 (1979)

    Google Scholar 

  27. Tracy, C.A., Widom, H.: Introduction to random matrices. To appear in the proceedings of the 8th Scheveningen Conference, Springer Lecture Notes in Physics

  28. Tracy, C.A., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys.159, 151–174 (1994)

    Google Scholar 

  29. Widom, H.: The asymptotics of a continuous analogue of orthogonal polynomials. to appear in J. Approx. Th.

  30. Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev.B13, 316–374 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, C.A., Widom, H. Level spacing distributions and the Bessel kernel. Commun.Math. Phys. 161, 289–309 (1994). https://doi.org/10.1007/BF02099779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099779

Keywords

Navigation