Skip to main content
Log in

The Free Energy of the Quantum Heisenberg Ferromagnet at Large Spin

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the spin-S ferromagnetic Heisenberg model in three dimensions, in the absence of an external field. Spin wave theory suggests that in a suitable temperature regime the system behaves effectively as a system of non-interacting bosons (magnons). We prove this fact at the level of the specific free energy: if S→∞ and the inverse temperature β→0 in such a way that βS stays constant, we rigorously show that the free energy per unit volume converges to the one suggested by spin wave theory. The proof is based on the localization of the system in small boxes and on upper and lower bounds on the local free energy, and it also provides explicit error bounds on the remainder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the convention of distinguishing (when needed) between operators and numbers or eigenvalues by means of a \(\hat{~} \) on top of the first ones. As usual we also denote vectors by bold letters.

  2. This can be proved as follows. Let us indicate by \(\mathbf{x}_{1},\ldots , \mathbf{x}_{\ell^{3}}\) the sites of Λ 1 labeled in lexicographic order. By the theory of the composition of angular momenta, a bona fide basis for is provided by the common eigenvectors of \((\hat{\mathbf{S}}_{\mathbf{x}_{1}}+\hat{\mathbf{S}}_{\mathbf {x}_{2}})^{2}\), \((\hat {\mathbf{S}}_{\mathbf{x}_{1}}+\hat{\mathbf{S}}_{\mathbf{x}_{2}}+\hat {\mathbf {S}}_{\mathbf{x}_{3}})^{2}, \ldots, (\hat{\mathbf{S}}_{\mathbf{x}_{1}}+\cdots+\hat{\mathbf {S}}_{\mathbf{x}_{\ell ^{3}-1}})^{2}\), \(\hat{\mathbf{S}}_{T}^{2}\), \(\hat{S}^{3}_{T}\). In other words, the eigenvalues of \((\hat{\mathbf{S}}_{\mathbf{x}_{1}}+\hat {\mathbf {S}}_{\mathbf{x}_{2}})^{2}\), \((\hat{\mathbf{S}}_{\mathbf{x}_{1}}+\hat {\mathbf {S}}_{\mathbf{x}_{2}}+\hat{\mathbf{S}}_{\mathbf{x}_{3}})^{2}, \ldots, (\hat{\mathbf{S}}_{\mathbf{x}_{1}}+\cdots+\hat{\mathbf {S}}_{\mathbf{x}_{\ell ^{3}-1}})^{2}\) can be used as good quantum numbers for classifying the states of . Note that the operators associated with these quantum numbers are all scalars, i.e., they commute with the three components of \(\hat{\mathbf{S}}_{T}\): therefore, the eigenvectors of \(H_{\varLambda _{1}}^{N}\) on are invariant under the action of \(\hat{\mathbf{S}}_{T}\), which implies in particular that is independent of \(S^{3}_{T}\).

References

  1. Bloch, F.: Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930)

    Article  ADS  MATH  Google Scholar 

  2. Bloch, F.: Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Z. Phys. 74, 295–335 (1932)

    ADS  Google Scholar 

  3. Bricmont, J., Fontaine, J.-R., Lebowitz, J.L., Lieb, E.H., Spencer, T.: Lattice systems with a continuous symmetry III. Low temperature asymptotic expansion for the plane rotator model. Commun. Math. Phys. 78, 545–566 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  4. Conlon, G.J., Solovej, J.P.: On asymptotic limits for the quantum Heisenberg model. J. Phys. A, Math. Gen. 23, 3199–3213 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Conlon, G.J., Solovej, J.P.: Upper bound on the free energy of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 23, 223–231 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Conlon, G.J., Solovej, J.P.: Uniform convergence of the free energy of the classical Heisenberg model to that of the Gaussian model. J. Stat. Phys. 65, 235–245 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Cooke, J.F., Hahn, H.H.: Application of the hard-core boson formalism to the Heisenberg ferromagnet. Phys. Rev. B 1, 1243–1250 (1970)

    Article  ADS  Google Scholar 

  8. Correggi, M., Giuliani, A., Seiringer, R.: in preparation

  9. Dyson, F.J.: General theory of spin-waves interactions. Phys. Rev. 102, 1217–1230 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Dyson, F.J.: Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102, 1230–1244 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in the quantum Heisenberg model. Phys. Rev. Lett. 37, 120–123 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  12. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  13. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–85 (1976)

    Article  ADS  Google Scholar 

  14. Garanin, D.A., Kladko, K., Fulde, P.: Quasiclassical Hamiltonians for large-spin systems. Eur. Phys. J. B 14, 293–300 (2000)

    Article  ADS  Google Scholar 

  15. Herring, C., Kittel, C.: On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869–880 (1951)

    Article  ADS  MATH  Google Scholar 

  16. Hofmann, C.P.: Spontaneous magnetization of the O(3) ferromagnet at low temperatures. Phys. Rev. B 65, 094430 (2002)

    Article  ADS  Google Scholar 

  17. Hofmann, C.P.: Spontaneous magnetization of an ideal ferromagnet: Beyond Dyson’s analysis. Phys. Rev. B 84, 064414 (2011)

    Article  ADS  Google Scholar 

  18. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940)

    Article  ADS  MATH  Google Scholar 

  19. Keffer, F.: Spin waves. In: Handbuch der Physik, vol. 18 (2), pp. 1–273. Springer, Berlin (1966)

    Google Scholar 

  20. Keffer, F., Loudon, R.: Simple physical theory of spin wave interactions. J. Appl. Phys. (Suppl.) 32, 2S (1961)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kladko, K., Fulde, P., Garanin, D.A.: Cumulant expansion for systems with large spins. Europhys. Lett. 46, 425–430 (1999)

    Article  ADS  Google Scholar 

  22. Kramers, H.A.: Commun. Kamerlingh Onnes Lab. Univ. Leiden (Suppl.) 22(83) (1936)

  23. Lieb, E.H.: The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  ADS  Google Scholar 

  25. Lieb, E.H., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  26. Lieb, E.H., Seiringer, R., Solovej, J.-P., Yngvason, J.: The mathematics of the Bose gas and its condensation. In: Oberwolfach Seminars, vol. 34. Birkhäuser, Basel (2005). Also available at arXiv:cond-mat/0610117 [cond-mat.stat-mech].

    Google Scholar 

  27. Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  28. Michoel, T., Nachtergaele, B.: Central limit theorems for the large-spin asymptotics of quantum spins. Prob. Theory Relat. Fields 130, 493–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Michoel, T., Nachtergaele, B.: The large-spin asymptotics of the ferromagnetic XXZ chain. Markov Process. Relat. Fields 11, 237–266 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Morita, T.: Bose–Einstein lattice gases equivalent to the Heisenberg model of ferro-, antiferro- and ferri-magnetism. Prog. Theor. Phys. 20, 614–624 (1958)

    Article  ADS  MATH  Google Scholar 

  31. Oguchi, T.: Theory of spin-wave interactions in ferro- and antiferromagnetism. Phys. Rev. 117, 117–123 (1960)

    Article  ADS  MATH  Google Scholar 

  32. Opechowski, W.: Über die temperaturabhängigkeit der magnetisierung eines ferromagnetikums bei tiefen temperaturen. Physica 4, 715–722 (1937)

    Article  ADS  MATH  Google Scholar 

  33. Rastelli, E., Lindgard, P.A.: Exact results for spin-wave renormalisation in Heisenberg, and planar ferromagnets. J. Phys. C 12, 1899–1916 (1979)

    Article  ADS  Google Scholar 

  34. Schafroth, M.R.: Self-consistent spin-wave theory for the ferromagnetic exchange problem. Proc. Phys. Soc. A 67, 33–38 (1954)

    Article  ADS  MATH  Google Scholar 

  35. Szaniecki, J.: On certain divergences in the quantum spin wave theory of ferromagnetism. J. Phys. C 7, 4113–4125 (1974)

    Article  ADS  Google Scholar 

  36. Toth, B.: Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 28, 75–84 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Vaks, V.G., Larkin, A.I., Pikin, S.A.: Thermodynamics of an ideal ferromagnetic substance. Sov. Phys. JETP 26, 188–199 (1968)

    ADS  Google Scholar 

  38. van Hemmen, J.L., Brito, A.A.S., Wreszinski, W.F.: Spin waves in quantum ferromagnets. J. Stat. Phys. 37, 187–213 (1984)

    Article  ADS  Google Scholar 

  39. Van Kranendonk, J.: Spin-deviation theory of ferromagnetism, I. Physica 21, 749–766 (1955)

    Article  ADS  MATH  Google Scholar 

  40. Van Kranendonk, J.: Spin-deviation theory of ferromagnetism, II. Physica 21, 925–945 (1955)

    Article  ADS  Google Scholar 

  41. Wallace, D.C.: Renormalized spin waves in the Heisenberg ferromagnet. Phys. Rev. 153, 547–558 (1967)

    Article  ADS  Google Scholar 

  42. Yang, D.H., Wang, Y.: Green’s-function diagrammatic technique for complicated level systems. II. An application to the spin-1 Heisenberg ferromagnet with easy-axis single-ion anisotropy. Phys. Rev. B 12, 1057–1070 (1975)

    Article  ADS  Google Scholar 

  43. Zittartz, J.: On the spin wave problem in the Heisenberg model of ferromagnetism. Z. Phys. 184, 506–520 (1965)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme ERC Starting Grant CoMBoS (grant agreement No. 239694). We thank E.H. Lieb, B. Nachtergaele, R. Seiringer and J.-P. Solovej for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Correggi.

Appendix: Two Technical Bounds

Appendix: Two Technical Bounds

In this appendix we prove Propositions 2.2 and 2.3.

Proof of Proposition 2.2

Let us assume for definiteness that Λ 1={x∈ℤ3:x i =1,…,}. We rewrite \(H_{\varLambda _{1}}^{N} \) by applying the Fourier transform , where \(\phi_{\mathbf{k}}(\mathbf{x})=\prod_{i=1}^{3}\phi_{k_{i}}(x_{i})\),

(A.1)

and the set of momenta \(\varLambda^{*}_{1,N}\) is

(A.2)

Then a straightforward computation shows that, if \(\varepsilon (\mathbf{k})=\sum_{i=1}^{3}(1-\cos k_{i})\),

(A.3)

Now, for every k0, one has ε(k)≥c 0 −2, for a suitable c 0>0. Therefore,

(A.4)

where in the last inequality we used Plancherel’s identity and the definition of total spin operator , from which on . Now, the expression in square brackets in the r.h.s. of Eq. (A.4) can be bounded from below by Sℓ 3(SS T / 3), so that

(A.5)

Therefore, for all S T such that \(S - \ell^{-3}S_{T} > 6c_{0}^{-1}\ell^{2} \), we get , which proves the proposition with \(c : = \frac{1}{2}J c_{0} \). □

Proof of Proposition 2.3

We start by investigating the part of \(\mathcal{K}^{N}_{\varLambda _{1}} \) associated with the square roots in the first term in (1.7). Using the fact that \(A_{\mathbf{x},\mathbf{y}}:= 1 - \sqrt{1 - \frac{\hat {n}_{\mathbf{x}}}{2S}} \sqrt{1 - \frac{\hat{n}_{\mathbf{y}}}{2S} } \) is a non-negative operator on the bosonic Hilbert space of interest, we get:

(A.6)

where in the first line we used the Cauchy–Schwarz inequality, while to go from the first to the second line we used the simple fact that \(1-\sqrt{1-x}\le x\), ∀x∈[0,1]. Finally, the remaining term in \(\mathcal{K}^{N}_{\varLambda _{1}} \) can be bounded trivially as \(J\vert \sum_{{ \langle\mathbf{x}, \mathbf{y} \rangle}\subset \varLambda _{1}} n_{\mathbf{x}}n_{\mathbf{y}}\vert \le(\mbox{const.}) ( \sum_{\mathbf{x}\in\varLambda_{1}} \hat{n}_{\mathbf {x}} )^{2}\), which implies the desired estimate. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correggi, M., Giuliani, A. The Free Energy of the Quantum Heisenberg Ferromagnet at Large Spin. J Stat Phys 149, 234–245 (2012). https://doi.org/10.1007/s10955-012-0589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0589-4

Keywords

Navigation