Skip to main content
Log in

Development of Predictive Expressions for Infinite Dilution Activity Coefficients, Molar Solubilities and Partition Coefficients for Solutes Dissolved in 2-Pyrrolidone Based on the Abraham Solvation Parameter Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for two saturated (2,2,4-trimethylpentane, cyclooctane) and 3 unsaturated hydrocarbons (1,7-octadiene, 1-hexyne, 4-vinyl-1-cyclohexene), one aromatic hydrocarbon (propylbenzene), one haloalkane (1,3-dichloropropane) and four halobenzenes (fluorobenzene, chlorobenzene, 1,2-dichlorobenzene, bromobenzene), two cyclic ethers (tetrahydrofuran, 1,4-dioxane), two alcohols (1-propanol, 2-propanol), three alkyl acetates (ethyl acetate, butyl acetate, pentyl acetate), and one alkanenitrile (acetonitrile) dissolved in 2-pyrrolidone at 298.15 K. The experimental results of the headspace chromatographic measurements, combined with published solubility and infinite dilution activity coefficient data, were used to derive Abraham model correlations for describing solute transfer into 2-pyrrolidone. Mathematical correlations based on the Abraham model describe the observed partition coefficient and activity coefficient data to within 0.14 log10 units (or less).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sedov, I.A., Salikov, T.M., Qian, E., Wadawadigi, A., Zha, O., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methyl-2-butanol based on measured activity coefficient and solubility data at 29815 K. J. Mol. Liq. 293, 111454/1-111454/10 (2019)

    Article  CAS  Google Scholar 

  2. Sedov, I.A., Salikov, T.M., Khaibrakhmanova, D.R., Wadawadigi, A., Zha, O., Qian, E., Hart, E., Barrera, M., Acree, W.E., Jr., Abraham, M.H.: Determination of Abraham model correlations for solute transfer into propyl acetate based on experimental activity coefficient and solubility data. J. Solution Chem. 47, 634–653 (2018)

    Article  CAS  Google Scholar 

  3. Sedov, I.A., Salikov, T.M., Wadawadigi, A., Zha, O., Qian, E., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements. J. Chem. Thermodyn. 124, 133–140 (2018)

    Article  CAS  Google Scholar 

  4. Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, C., Acree, W.E., Jr., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)

    Article  CAS  Google Scholar 

  5. Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-ethoxyethanol from water and from the gas phase. J. Mol. Liq. 208, 63–70 (2015)

    Article  CAS  Google Scholar 

  6. Sedov, I.A., Khailbrakhmanova, D., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Schmidt, A., Acree, W.E., Abraham, M.H.: Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J. Mol. Liq. 212, 833–840 (2015)

    Article  CAS  Google Scholar 

  7. Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevaronva, V., Dai, C., Zhang, S., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-butoxyethanol from water and from the gas phase at 298 K. J. Mol. Liq. 209, 196–202 (2015)

    Article  CAS  Google Scholar 

  8. Sedov, I.A., Magsumov, T.I., Hart, E., Higgins, E., Grover, D., Zettl, H., Zad, M., Acree, W.E., Jr., Abraham, M.H.: Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J. Solution Chem. 46, 331–351 (2017)

    Article  CAS  Google Scholar 

  9. Sedov, I.A., Magsumov, T.I., Hart, E., Ramirez, A.M., Cheeran, S., Barrera, M., Horton, M.Y., Wadawadigi, A., Zha, O., Tong, X.Y., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for triethylene glycol solvent derived from infinite dilution activity coefficient, partition coefficient and solubility data measured at 298.15 K. J. Solution Chem. 46, 2249–2267 (2017)

    Article  CAS  Google Scholar 

  10. Sedov, I.A., Salikov, T., Hart, E., Higgins, E., Acree, W.E., Jr., Abraham, M.H.: Abraham model linear free energy relationships for describing the partitioning and solubility behavior of nonelectrolyte organic solutes dissolved in pyridine at 298.15 K. Fluid Phase Equilib. 431, 68–74 (2017)

    Article  CAS  Google Scholar 

  11. Magsumov, T.I., Sedov, I.A., Acree, W.E., Jr.: Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 323, 114609/1-114609/10 (2021)

    Article  CAS  Google Scholar 

  12. Varfolomeev, M.A., Rakipov, I.T., Khachatrian, A.A., Acree, W.E., Jr., Brumfield, M., Abraham, M.H.: Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlation. Thermochim. Acta 617, 8–20 (2015)

    Article  CAS  Google Scholar 

  13. Varfolomeev, M.A., Rakipov, I.T., Acree, W.E., Jr., Brumfield, M., Abraham, M.H.: Examination of hydrogen-bond interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation. Thermochim. Acta 594, 68–79 (2014)

    Article  CAS  Google Scholar 

  14. Wilson, A., Tian, A., Dabadge, N., Acree, W.E., Jr., Varfolomeev, M.A., Rakipov, I.T., Arkipova, S.M., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases in dichloromethane and 1,4-dioxane. Struct. Chem. 24, 1841–1853 (2013)

    Article  CAS  Google Scholar 

  15. Stephens, T.W., Chou, V., Quay, A.N., Acree, W.E., Jr., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases dissolved in 1-propanol and tetrahydrofuran. Thermochim. Acta 519, 103–113 (2011)

    Article  CAS  Google Scholar 

  16. Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree, W.E., Jr., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases dissolved in 2-propanol, 2-butanol, 2-methyl-1-propanol and ethanol. Thermochim. Acta 523, 214–220 (2011)

    Article  CAS  Google Scholar 

  17. Varfolomeev, M.A., Stolov, M.A., Nagrimanov, R.N., Rakipov, I.T., Acree, W.E., Jr., Abraham, M.H.: Analysis of solute–pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochim. Acta 660, 11–17 (2018)

    Article  CAS  Google Scholar 

  18. Stolov, M.A., Zaitseva, K.V., Varfolomeev, M.A., Acree, W.E., Jr.: Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298 K: prediction and analysis of intermolecular interaction contributions. Thermochim. Acta 648, 91–99 (2017)

    Article  CAS  Google Scholar 

  19. Huang, X., Li, S.: Solubility of acetylene in alcohols and ketones. J. Chem. Eng. Data 63, 2127–2134 (2018)

    Article  CAS  Google Scholar 

  20. Gruber, D., Topphoff, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 9. Results for various solutes with the stationary phases 2-pyrrolidone and N-methylformamide. J. Chem. Eng. Data 43, 935–940 (1998)

    Article  CAS  Google Scholar 

  21. Abraham, M.H., Acree, W.E., Jr., Cometto-Muniz, J.E.: Partition of compounds from water and from air into amides. New J. Chem. 33, 2034–2043 (2008)

    Article  CAS  Google Scholar 

  22. Gharagheizi, F., Eslamimanesh, A., Ilani-Kashkouli, P., Mohammadi, A.H., Richon, D.: Determination of vapor pressure of chemical compounds: a group contribution model for An extremely large database. Ind. Eng. Chem. Res. 51, 7119–7125 (2012)

    Article  CAS  Google Scholar 

  23. Domanska, U., Lukoshko, E.V.: Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. J. Chem. Thermodyn. 68, 53–59 (2014)

    Article  CAS  Google Scholar 

  24. Domanska, U., Krolikowski, M., Acree, W.E., Baker, G.A.: Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in a novel bicyclic guanidinium superbase-derived protic ionic liquid. J. Chem. Thermodyn. 58, 62–69 (2013)

    Article  CAS  Google Scholar 

  25. Karpinska, M., Wlazlo, M.: Application of dicyanamide-based ionic liquid in separation of binary mixtures based on gamma infinity data measurements. J. Mol. Liq. 310, 113176/1-113176/10 (2020)

    Article  CAS  Google Scholar 

  26. Wlazlo, M., Karpinska, M., Domanska, U.: Separation of water/butan-1-ol mixtures based on limiting activity coefficients with phosphonium-based ionic liquid. J. Chem. Thermodyn. 113, 183–191 (2017)

    Article  CAS  Google Scholar 

  27. Mutelet, F., Moise, J.-C., Skrzypczak, A.: Evaluation of the performance of trigeminal tricationic ionic liquids for separation problems. J. Chem. Eng. Data 57, 918–927 (2012)

    Article  CAS  Google Scholar 

  28. Chatzitakis, P., Safarov, J., Opferkuch, F., Dawoud, B., Hassel, E.: Vapor pressures and activity coefficients of 2,2,2-trifluoroethanol in binary mixtures with 1,3-dimethyl-2-imidazolidinone and 2-pyrrolidone. J. Mol. Liq. 305, 112828/1-112828/10 (2020)

    Article  CAS  Google Scholar 

  29. Guillen, M.D., Blanco, J., Canga, J.S., Blanco, C.G.: Study of the effectiveness of 27 organic solvents in the extraction of coal tar pitches. Energy Fuels 5, 188–192 (1991)

    Article  CAS  Google Scholar 

  30. Bikkulov, A.Z., Khazipov, RKh.: Choosing of selective solvents for the extraction of low-molecular-weight aromatic hydrocarbons. Khim. Tekhnol. Topliv Masel 16, 15–19 (1971)

    CAS  Google Scholar 

  31. Ma, S., Hwang, S., Lee, S., Acree, W.E., No, K.T.: Incorporation of hydrogen bond angle dependency into the generalized solvation free energy density model. J. Chem. Inf. Model. 58, 761–772 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S., Cho, K.-H., Acree, W.E., Tai, K.: Development of surface-SFED models for polar solvents. J. Chem. Inf. Model. 52, 440–448 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Hille, C., Ringe, S., Deimel, M., Kunkel, C., Acree, W.E., Reuter, K., Oberhofer, H.: Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme. J. Chem. Phys. 150, 041710/1-041710/13 (2019)

    Article  CAS  Google Scholar 

  34. Kashefolgheta, S., Oliveira, M.P., Rieder, S.R., Horta, B.A.C., Acree, W.E., Jr., Hunenberger, P.H.: Evaluating classical force fields against experimental cross-solvation free energies. J. Chem. Theory Comp. 16, 7556–7580 (2020)

    Article  CAS  Google Scholar 

  35. Klamt, A.: The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1338/1-e1338/11 (2018)

    Article  CAS  Google Scholar 

  36. Klamt, A., Diedenhofen, M.: Calculation of solvation free energies with DCOSMO-RS. J. Phys. Chem. A 119, 5439–5445 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Xue, Z., Mu, T., Gmehling, J.: Comparison of the a priori COSMO-RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do) as well as modified UNIFAC(Do) consortium. Ind. Eng. Chem. Res. 51, 11809–11817 (2012)

    Article  CAS  Google Scholar 

  38. Roese, S.N., Heintz, J.D., Uzat, C.B., Schmt, A.J., Margulis, G.V., Sabatino, S.J., Paluch, A.S.: Assessment of the SM12, SM8, and SMD solvation models for predicting limiting activity coefficients at 298.15 K. Processes 8, 623/1-623/24 (2020)

    Article  CAS  Google Scholar 

  39. Dhakal, P., Roese, S.N., Lucas, M.A., Paluch, A.S.: Predicting limiting activity coefficients and phase behavior from molecular structure: expanding MOSCED to alkanediols using group contribution methods and electronic structure calculations. J. Chem. Eng. Data 63, 2586–2598 (2018)

    Article  CAS  Google Scholar 

  40. Brouwer, T., Schuur, B.: Model performances evaluated for infinite dilution activity coefficients prediction at 298.15 K. Ind. Eng. Chem. Res. 58, 8903–8914 (2019)

    Article  CAS  Google Scholar 

  41. Luiz-da-Silveira, C., Salau, N.P.G.: From Wilson to F-SAC: a comparative analysis of correlative and predictive activity coefficient models to determine VLE and IDAC of binary systems. Fluid Phase Equilib. 464, 1–11 (2018)

    Article  CAS  Google Scholar 

  42. Ahmadian Behrooz, H., Boozarjomehry, R.B.: Prediction of limiting activity coefficients for binary vapor–liquid equilibrium using neural networks. Fluid Phase Equilib. 433, 174–183 (2017)

    Article  CAS  Google Scholar 

  43. Xiong, R., Sandler, S.I., Burnett, R.I.: An improvement to COSMO-SAC for predicting thermodynamic properties. Ind. Eng. Chem. Res. 53, 8265–8278 (2014)

    Article  CAS  Google Scholar 

  44. Saidi, C.N., Mielczarek, D.C., Paricaud, P.: Predictions of solvation Gibbs free energies with COSMO-SAC approaches. Fluid Phase Equilib. 517, 112614/1-112614/14 (2020)

    Google Scholar 

  45. Borhani, T.N., Garcia-Munoz, S., Vanesa Luciani, C., Galindo, A., Adjiman, C.S.: Hybrid QSPR models for the prediction of the free energy of solvation of organic solute/solvent pairs. Phys. Chem. Chem. Phys 21, 13706–13720 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Lisboa, F.M., Pliego, J.R., Jr.: Infinite dilution activity coefficient from SMD calculations: accuracy and performance for predicting liquid–liquid equilibria. J. Mol. Model. 24, 1–7 (2018)

    Article  CAS  Google Scholar 

  47. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  48. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree, W.E., Jr.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Abraham, M.H., Acree, W.E., Jr., Cometto-Muniz, J.E.: Descriptors for terpene esters from chromatographic and partition measurements: estimation of human odor detection thresholds. J. Chromatogr. A 1609, 460428/1-460428/5 (2020)

    Article  CAS  Google Scholar 

  51. Abraham, M.H., Acree, W.E., Jr.: Gas–solvent and water–solvent partition of trans-stilbene at 298 K. J. Mol. Liq. 238, 58–61 (2017)

    Article  CAS  Google Scholar 

  52. Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.-U.: UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. (2017) http://www.ufz.de/lserd. Accessed 22 May 2021

  53. Shanmugam, N., Eddula, S., Acree, W.E., Jr., Abraham, M.H.: Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization for linear C7–C14 alkynes from gas chromatographic retention index data. Eur. Chem. Bull. 10, 46–57 (2021)

    Article  CAS  Google Scholar 

  54. Tirumala, P., Huang, J., Eddula, S., Jiang, C., Xu, A., Liu, G., Acree, W.E., Jr., Abraham, M.H.: Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization and sublimation for C9–C26 mono-alkyl alkanes and polymethyl alkanes. Eur. Chem. Bull. 9, 317–328 (2020)

    Article  CAS  Google Scholar 

  55. Abraham, M.H., Acree, W.E., Jr., Rafols, C., Roses, M.: Equations for the correlation and prediction of partition coefficients of neutral molecules and ionic species in the water–isopropanol solvent system. J. Solution Chem. 50, 458–472 (2021)

    Article  CAS  Google Scholar 

  56. Abraham, M.H., Acree, W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–methanol mixtures. J. Solution Chem. 45, 861–874 (2016)

    Article  CAS  Google Scholar 

  57. Abraham, M.H., Acree, W.E., Jr.: Equations for the partition of neutral molecules, ions and ionic species from water to water–ethanol mixtures. J. Solution Chem. 41, 730–740 (2012)

    Article  CAS  Google Scholar 

  58. Abraham, M.H., Acree, W.E., Jr.: Partition coefficients and solubilities of compounds in the water–ethanol solvent system. J. Solution Chem. 40, 1279–1290 (2011)

    Article  CAS  Google Scholar 

  59. Smart, K.R., Garcia, E., Oloyede, B., Fischer, R., Golden, T., Acree, W.E., Jr., Abraham, M.H.: The partition of organic compounds from water into the methyl isobutyl ketone extraction solvent with updated Abraham equation. Phys. Chem. Liq. 59, 431–441 (2021)

    Article  CAS  Google Scholar 

  60. Smart, K., Connolly, E., Ocon, L., Golden, T.D., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for describing the partition of organic compounds from water into methyl ethyl ketone extraction solvent. Phys. Chem. Liq. (2021). https://doi.org/10.1080/00319104.2021.1907845

    Article  Google Scholar 

  61. Jiang, B., Horton, M.Y., Acree, W.E., Jr., Abraham, M.H.: Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Phys. Chem. Liq. 55, 358–385 (2017)

    Article  CAS  Google Scholar 

  62. Twu, P., Anderson, J., Stovall, D.M., Zhang, S., Dai, C., Schmidt, A., Acree, W.E., Jr., Abraham, M.H.: Determination of the solubilising character of 2-methoxyethyl-(dimethyl)ethylammonium tris(pentafluoroethyl)trifluorophosphate based on the Abraham solvation parameter model. Phys. Chem. Liq. 2016(54), 110–126 (2016)

    Article  CAS  Google Scholar 

  63. Mutelet, F., Ravula, S., Baker, G.A., Woods, D., Tong, X., Acree, W.E., Jr.: Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Solution Chem. 47, 308–335 (2018)

    Article  CAS  Google Scholar 

  64. Abraham, M.H., Ibrahim, A., Acree, W.E.: Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 43(3), 478–485 (2008)

    Article  CAS  PubMed  Google Scholar 

  65. Abraham, M.H., Ibrahim, A., Acree, W.E., Jr.: Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 42, 743–751 (2007)

    Article  CAS  PubMed  Google Scholar 

  66. Abraham, M.H., Ibrahim, A.: Blood or plasma to skin distribution of drugs: a linear free energy analysis. Int. J. Pharm. 329, 129–134 (2007)

    Article  CAS  PubMed  Google Scholar 

  67. Abraham, M.H., Ibrahim, A.: Air to fat and blood to fat distribution of volatile organic compounds and drugs: linear free energy analyses. Eur. J. Med. Chem. 41, 1430–1438 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. Abraham, M.H., Ibrahim, A., Acree, W.E., Jr.: Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. Chem. Res. Toxicol. 19, 801–808 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. Abraham, M.H., Ibrahim, A., Zhao, Y., Acree, W.E., Jr.: A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J. Pharm. Sci. 95, 2091–2100 (2006)

    Article  CAS  PubMed  Google Scholar 

  70. Hart, E.F., Grover, D., Zettl, H., Koshevarova, V., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model expressions for predicting enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 54, 141–154 (2016)

    Article  CAS  Google Scholar 

  71. Huang, J., Eddula, S., Tirumala, P., Casillas, T., Acree, W.E., Jr., Abraham, M.H.: Updated Abraham model correlations to describe enthalpies of solvation of solutes dissolved in heptane, cyclohexane and N N-dimethylformamide. Phys. Chem. Liq. 59, 442–453 (2021)

    Article  CAS  Google Scholar 

  72. Lu, J.Z., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N, N-dimethylacetamide, 2-butanone and tetrahydrofuran (updated) at 298.15 K. Phys. Chem. Liq. 58, 675–692 (2020)

    Article  CAS  Google Scholar 

  73. Lu, J.Z., Acree, W.E., Jr., Abraham, M.H.: Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile. Phys. Chem. Liq. 57, 84–99 (2019)

    Article  CAS  Google Scholar 

  74. Higgins, E., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model correlations for enthalpies of solvation of organic solutes dissolved in 1,3-dioxolane. Phys. Chem. Liq. 54, 786–796 (2016)

    Article  CAS  Google Scholar 

  75. Garcia, B., Aparicio, S., Alcalde, R., Ruiz, R., Davila, M.J., Leal, J.M.: Characterization of lactam-containing binary solvents by solvatochromic indicators. J. Phys. Chem. B 108, 3024–3029 (2004)

    Article  CAS  Google Scholar 

  76. George, J., Sastry, N.V.: Densities, viscosities, speeds of sound, and relative permittivities for water + cyclic amides (2-pyrrolidinone, 1-methyl-2-pyrrolidinone, and 1-vinyl-2-pyrrolidinone) at different temperatures. J. Chem. Eng. Data 49, 235–242 (2004)

    Article  CAS  Google Scholar 

  77. Papamatthaiakis, D., Aroni, F., Havredaki, V.: Isentropic compressibilities of (amide + water) mixtures: a comparative study. J. Chem. Thermodyn. 40, 107–118 (2007)

    Article  CAS  Google Scholar 

  78. Schult, C.J., Neely, B.J., Robinson, R.L., Gasem, K.A.M., Todd, B.A.: Infinite-dilution activity coefficients for several solutes in hexadecane and in N-methyl-2-pyrrolidone (NMP): experimental measurements and UNIFAC predictions. Fluid Phase Equilib. 179, 117–129 (2001)

    Article  CAS  Google Scholar 

  79. Krummen, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. Fluid Phase Equilib. 215, 283–294 (2004)

    Article  CAS  Google Scholar 

  80. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid triethylsulphonium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 41, 754–758 (2009)

    Article  CAS  Google Scholar 

  81. Domanska, U., Laskowska, M.: Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem. Thermodyn. 41, 645–650 (2009)

    Article  CAS  Google Scholar 

  82. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. B 112, 11100–11105 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J. Phys. Chem. B 111, 11984–11988 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. Yan, P.-F., Yang, M., Liu, X.-M., Liu, Q.-S., Tan, Z.-C., Welz-Biermann, U.: Activity coefficients at infinite dilution of organic solutes in 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] using gas–liquid chromatography. J. Chem. Eng. Data 55, 2444–2450 (2010)

    Article  CAS  Google Scholar 

  85. Paduszynski, K., Domanska, U.: Limiting activity coefficients and gas–liquid partition coefficients of various solutes in piperidinium ionic liquids: measurements and LSER calculations. J. Phys. Chem. B 115, 8207–8215 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. Domanska, U., Zawadzki, M.: Thermodynamic properties of the N-butylisoquinolinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 43, 989–995 (2011)

    Article  CAS  Google Scholar 

  87. Wlazlo, M., Domanska, U.: Gamma infinity data for the separation of water-butan-1-ol mixtures using ionic liquids. Sep. Purif. Technol. 162, 162–170 (2016)

    Article  CAS  Google Scholar 

  88. Marciniak, A., Wlazlo, M.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium trifluorotris(perfluoroethyl)phosphate. J. Phys. Chem. B 114, 6990–6994 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. Domanska, U., Redhi, G.G., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate using GLC. Fluid Phase Equilib. 278, 97–102 (2009)

    Article  CAS  Google Scholar 

  90. Olivier, E., Letcher, T.M., Naidoo, P., Ramjugernath, D.: Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate using gas–liquid chromatography at T =(313.15, 323.15, and 333.15)K. J. Chem. Thermodyn. 42, 646–650 (2010)

    Article  CAS  Google Scholar 

  91. Gwala, N.V., Deenadayalu, N., Tumba, K., Ramjugernath, D.: Activity coefficients at infinite dilution for solutes in the trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid using gas–liquid chromatography. J. Chem. Thermodyn. 42, 256–261 (2010)

    Article  CAS  Google Scholar 

  92. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 41, 1350–1355 (2009)

    Article  CAS  Google Scholar 

  93. Domanska, U., Wlazlo, M.: Thermodynamics and limiting activity coefficients measurements for organic solutes and water in the ionic liquid 1-dodecyl-3-methylimidzolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 103, 76–85 (2016)

    Article  CAS  Google Scholar 

  94. Möllmann, C., Gmehling, J.: Measurement of activity coefficients at infinite dilution using gas−liquid chromatography. 5. Results for N-methylacetamide, N, N-dimethylacetamide, N, N-dibutylformamide, and sulfolane as stationary phases. J. Chem. Eng. Data 42, 35–40 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Igor Sedov acknowledges the Russian Federation President Grant MD-1444.2021.1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Acree Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magsumov, T.I., Sedov, I.A. & Acree, W.E. Development of Predictive Expressions for Infinite Dilution Activity Coefficients, Molar Solubilities and Partition Coefficients for Solutes Dissolved in 2-Pyrrolidone Based on the Abraham Solvation Parameter Model. J Solution Chem 51, 975–991 (2022). https://doi.org/10.1007/s10953-021-01104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01104-4

Keywords

Navigation