Skip to main content
Log in

Infinite Dilution Activity Coefficients and Gas-to-Liquid Partition Coefficients of Organic Solutes Dissolved in 1-Benzylpyridinium Bis(Trifluoromethylsulfonyl)Imide and 1-Cyclohexylmethyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Imide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Infinite dilution activity coefficients and gas-to-ionic liquid partition coefficients were measured for a chemically diverse set of 48 or more organic solute probes dissolved in the ionic liquids 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide ([BzPy][Tf2N]) and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([ChxmPyrr][Tf2N]) in the temperature range from 323.15 to 373.15 K using inverse gas chromatography. Selectivities and capacities for different separation problems were calculated from the measured chromatographic data. The measured partition coefficients were correlated using mathematical equations based on the Abraham general solvation parameter model. The derived Abraham model correlations back-calculated the observed partition coefficients to within 0.12 log10 units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Revelli, A.-L., Mutelet, F., Jaubert, J.-N.: Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. J. Chromatog. A 1216, 4775–4786 (2009)

    Article  CAS  Google Scholar 

  2. Moise, J.-C., Mutelet, F., Jaubert, J.-N., Grubbs, L.M., Acree Jr., W.E., Baker, G.A.: Activity coefficients at infinite dilution of organic compounds in four new imidazolium-based ionic liquids. J. Chem. Eng. Data 56, 3106–3114 (2011)

    Article  CAS  Google Scholar 

  3. Revelli, A.-L., Mutelet, F., Jaubert, J.-N., Garcia-Martinez, M., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 2434–2443 (2010)

    Article  CAS  Google Scholar 

  4. Mutelet, F., Revelli, A.-L., Jaubert, J.-N., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010)

    Article  CAS  Google Scholar 

  5. Mutelet, F., Jaubert, J.-N.: Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Thermodyn. 39, 1144–1150 (2007)

    Article  CAS  Google Scholar 

  6. Revelli, A.-L., Mutelet, F., Turmine, M., Solimando, R., Jaubert, J.-N.: Activity coefficients at infinite dilution of organic compounds in 1-butyl-3-methylimidazolium tetrafluoroborate using inverse gas chromatography. J. Chem. Eng. Data 54, 90–101 (2009)

    Article  CAS  Google Scholar 

  7. Mutelet, F., Jaubert, J.-N.: Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. J. Chromatog. A 1102, 256–267 (2006)

    Article  CAS  Google Scholar 

  8. Allal, F., Mutelet, F., Dahmani, A., Saidat, B.: Measurements of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium ethylphosphonate [EMIM]EtO)(H)PO2] using gas-liquid chromatography. J. Mol. Liq. 220, 243–247 (2016)

    Article  CAS  Google Scholar 

  9. Twu, P., Anderson, J.L., Stephens, T.W., Lu, H., Satish, K., Shan, D., Acree Jr., W.E., Abraham, M.H.: Determination of the solubilizing character of 1-(2-hydroxyethyl)-1-methylimidazolium tris(pentafluoroethyl)trifluorophosphate based on the Abraham solvation parameter model. Eur. Chem. Bull. 2, 954–964 (2013)

    CAS  Google Scholar 

  10. Mutelet, F., Djebouri, H., Baker, G.A., Ravula, S., Jiang, B., Tong, X., Woods, D., Acree Jr., W.E.: Study of benzyl- or cyclohexyl-functionalized ionic liquids using inverse gas chromatography. J. Mol. Liq. 242, 550–559 (2017)

    Article  CAS  Google Scholar 

  11. Lukoshko, E., Mutelet, F., Domanska, U.: Experimental and theoretically study of interaction between organic compounds and tricyanomethanide based ionic liquids. J. Chem. Thermodyn. 85, 49–56 (2015)

    Article  CAS  Google Scholar 

  12. Acree Jr., W.E., Baker, G.A., Revelli, A.-L., Moise, J.-C., Mutelet, F.: Activity coefficients at infinite dilution for organic compounds dissolved in 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids having six-, eight- and ten-carbon alkyl chains. J. Chem. Eng. Data 57, 3510–3518 (2012)

    Article  CAS  Google Scholar 

  13. Mutelet, F., Hassan, E.-S.R.E., Stephens, T.W., Acree Jr., T.W., Baker, G.A.: Activity coefficients at infinite dilution for organic solutes dissolved in three 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids bearing short linear alkyl side chains of three to five carbons. J. Chem. Eng. Data 58, 2210–2218 (2013)

    Article  CAS  Google Scholar 

  14. Grubbs, L.M., Ye, S., Saifullah, M., Acree Jr., W.E., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of hexyl(trimethyl)ammonium bis((trifluoromethyl)sulfonyl)imide, 1-propyl-1-methylpiperidinium bis((trifluoromethyl)sulfonyl)imide, and 1-butyl-1-methylpyrrolidinium thiocyanate. J. Solution Chem. 40, 2000–2022 (2011)

    Article  CAS  Google Scholar 

  15. Stephens, T.W., Acree Jr., W.E., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpyrrolidinium tetracyanoborate. J. Solution Chem. 41, 1165–1184 (2012)

    Article  CAS  Google Scholar 

  16. Twu, P., Anderson, J.L., Stephens, T.W., Wilson, A., Acree Jr., W.E., Abraham, M.H.: Correlation of the solubilizing abilities of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, 1-butyl-1-methylpyrrolidinium triflate and 1-methoxyethyl-1-methylmorpholinium tris(pentafluoroethyl)trifluorophosphate. J. Solution Chem. 42, 772–799 (2013)

    Article  CAS  Google Scholar 

  17. Jiang, R., Anderson, J.L., Stephens, T.W., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for predicting gas-to-liquid partition coefficients and activity coefficients of organic solutes dissolved in 1-(2-methoxyethyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Eur. Chem. Bull. 2, 741–751 (2013)

    CAS  Google Scholar 

  18. Acree Jr., W.E., Baker, G.A., Mutelet, F., Moise, J.-C.: Partition coefficients of organic compounds in four new tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 56, 3688–3697 (2011)

    Article  CAS  Google Scholar 

  19. Mutelet, F., Alonso, D., Ravula, S., Baker, G.A., Jiang, B., Acree Jr., W.E.: Infinite dilution activity coefficients of solutes dissolved in anhydrous alkyl(dimethyl)isopropylammonium bis(trifluoromethylsulfonyl)imide ionic liquids containing functionalized- and nonfunctionalized-alkyl chains. J. Mol. Liq. 222, 295–312 (2016)

    Article  CAS  Google Scholar 

  20. Twu, P., Anderson, J.L., Stovall, D.M., Zhang, S., Dai, C., Schmidt, A., Acree Jr., W.E., Abraham, M.H.: Determination of the solubilising character of 2-methoxyethyl-(dimethyl)ethylammonium tris(pentafluoroethyl)trifluorophosphate based on the Abraham solvation parameter model. Phys. Chem. Liq. 54, 110–126 (2016)

    Article  CAS  Google Scholar 

  21. Revelli, A.-L., Sprunger, L.M., Gibbs, J., Acree Jr., W.E., Baker, G.A., Mutelet, F.: Activity coefficients at infinite dilution of organic compounds in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide using inverse gas chromatography. J. Chem. Eng. Data 54, 977–985 (2009)

    Article  CAS  Google Scholar 

  22. Mutelet, F., Alonso, D., Stephens, T.W., Acree Jr., W.E., Baker, G.A.: Infinite dilution activity coefficients of solutes dissolved in two trihexyl(tetradecyl)phosphonium ionic liquids. J. Chem. Eng. Data 59, 1877–1885 (2014)

    Article  CAS  Google Scholar 

  23. Ayad, A., Mutelet, F., Negadi, A., Acree Jr., W.E., Jiang, B., Lu, A., Wagle, D.V., Baker, G.A.: Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. J. Mol. Liq. 215, 176–184 (2016)

    Article  CAS  Google Scholar 

  24. Baelhadj, A.C., Mutelet, F., Jiang, B., Acree Jr., W.E.: Activity coefficients at infinite dilution for organic solutes dissolved in two 1,2,3-tris(diethylamino)cyclopenylium based room temperature ionic liquids. J. Mol. Liq. 223, 89–99 (2016)

    Article  CAS  Google Scholar 

  25. Domanska, U., Wlazlo, M., Karpinska, M., Zawadzki, M.: High selective water/butan-1-ol separation on investigation of limiting activity coefficients with [P8,8,8,8][NTf2] ionic liquid. Fluid Phase Equilib. 449, 1–9 (2017)

    Article  CAS  Google Scholar 

  26. Wlazlo, M., Karpinska, M., Domanska, U.: Separation of water/butan-1-ol mixtures based on limiting activity coefficients with phosphonium-based ionic liquid. J. Chem. Thermodyn. 113, 183–191 (2017)

    Article  CAS  Google Scholar 

  27. Domanska, U., Wlazlo, M., Karpinska, M., Zawadzki, M.: Separation of binary mixtures hexane/hex-1-ene, cyclohexane/cyclohexene and ethylbenzene/styrene based on limiting activity coefficients. J. Chem. Thermodyn. 110, 227–236 (2017)

    Article  CAS  Google Scholar 

  28. Karpinska, M., Wlazlo, M., Domanska, U.: Separation of binary mixtures based on gamma infinity data using [EMIM][TCM] ionic liquid and modelling of thermodynamic functions. J. Mol. Liq. 225, 382–390 (2017)

    Article  CAS  Google Scholar 

  29. Domanska, U., Karpinska, M., Wlazlo, M.: Bis(trifluoromethylsulfonyl)imide, or dicyanamide-based ionic liquids in the liquid–liquid extraction of hex-1-ene from hexane and cyclohexene from cyclohexane. J. Chem. Thermodyn. 105, 375–384 (2017)

    Article  CAS  Google Scholar 

  30. Wlazlo, M., Karpinska, M., Domanska, U.: Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid. J. Chem. Thermodyn. 102, 39–47 (2016)

    Article  CAS  Google Scholar 

  31. Marciniak, A., Wlazlo, M.: Activity coefficients at infinite dilution, physicochemical and thermodynamic properties for organic solutes and water in the ionic liquid ethyl-dimethyl-(2-methoxyethyl)ammonium trifluorotris(perfluoroethyl)phosphate. J. Chem. Thermodyn. 89, 245–250 (2015)

    Article  CAS  Google Scholar 

  32. Wlazlo, M., Marciniak, A., Zawadzki, M., Dudkiewicz, B.: Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide. J. Chem. Thermodyn. 86, 154–161 (2015)

    Article  CAS  Google Scholar 

  33. Wlazlo, M., Marciniak, A., Letcher, T.M.: Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate. J. Solution Chem. 44, 413–430 (2015)

    Article  CAS  Google Scholar 

  34. Orfao, E.F., Dohnal, V., Blahut, A.: Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation. J. Chem. Thermodyn. 65, 53–64 (2013)

    Article  CAS  Google Scholar 

  35. Blahut, A., Dohnal, V.: Interactions of volatile organic compounds with the ionic liquids 1-butyl-1-methylpyrrolidinium tetracyanoborate and 1-butyl-1-methylpyrrolidinium bis(oxalato)borate. J. Chem. Thermodyn. 57, 344–354 (2013)

    Article  CAS  Google Scholar 

  36. Blahut, A., Dohnal, V., Vrbka, P.: Interactions of volatile organic compounds with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J. Chem. Thermodyn. 47, 100–108 (2012)

    Article  CAS  Google Scholar 

  37. Domanska, U., Paduszynski, K.: Measurements of activity coefficients at infinite dilution of organic solutes and water in 1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide ionic liquid using G.L.C. J. Chem. Thermodyn. 42, 1361–1366 (2010)

    Article  CAS  Google Scholar 

  38. Krummen, M., Wasserscheid, P., Gmehling, J.: Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J. Chem. Eng. Data 47, 1411–1417 (2002)

    Article  CAS  Google Scholar 

  39. Zhang, J., Zhang, Q., Qiao, B., Deng, Y.: Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J. Chem. Eng. Data 52, 2277–2283 (2007)

    Article  CAS  Google Scholar 

  40. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 41, 1350–1355 (2009)

    Article  CAS  Google Scholar 

  41. Domanska, U., Zawadzki, M., Królikowska, M., Tshibangu, M.-M., Ramjugernath, D., Letcher, T.-M.: Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid [C8iQuin][NTf2] using GLC. J. Chem. Thermodyn. 43, 499–504 (2011)

    Article  CAS  Google Scholar 

  42. Krumman, M., Gruber, D., Gmehling, J.: Measurement of activity coefficients at infinite dilution in solvent mixtures using the dilutor technique. Ind. Eng. Chem. Res. 39, 2114–2123 (2000)

    Article  Google Scholar 

  43. Möllmann, C., Gmehling, J.: Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 5. Results for N-methylacetamide, N,N-dimethylacetamide, N,N-dibutylformamide, and sulfolane as stationary phases. J. Chem. Eng. Data 42, 35–40 (1997)

    Article  Google Scholar 

  44. Kato, S., Bluck, D.: Practical applications of a pure prediction method for binary VLE to the establishment of a high-precision UNIFAC. J. Chem. Eng. Data 61, 4236–4244 (2016)

    Article  CAS  Google Scholar 

  45. Kang, J.W., Diky, V., Frenkel, M.: New modified UNIFAC parameters using critically evaluated phase equilibrium data. Fluid Phase Equilib. 388, 128–141 (2015)

    Article  CAS  Google Scholar 

  46. Lei, Z., Dai, C., Liu, X., Xiao, L., Chen, B.: Extension of the UNIFAC model for ionic liquids. Ind. Eng. Chem. Res. 51, 12135–12144 (2012)

    Article  CAS  Google Scholar 

  47. Xue, Z., Mu, T., Gmehling, J.: Comparison of the a priori COSMO-RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium. Ind. Eng. Chem. Res. 51, 11809–11817 (2012)

    Article  CAS  Google Scholar 

  48. Gerber, R.P., de Soares, P.R.: Prediction of Infinite-dilution activity coefficients using UNIFAC and COSMO-SAC variants. Ind. Eng. Chem. Res. 49, 7488–7496 (2010)

    Article  CAS  Google Scholar 

  49. Flores, G.B., Staudt, P.B., de Soares, R.P.: Including dispersive interactions in the F-SAC model. Fluid Phase Equilib. 426, 56–64 (2016)

    Article  CAS  Google Scholar 

  50. Possani, L.F.K., Flores, G.B., Staudt, P.B., de Soares, R.P.: Simultaneous correlation of infinite dilution activity coefficient, vapor–liquid, and liquid–liquid equilibrium data with F-SAC. Fluid Phase Equilib. 364, 31–41 (2014)

    Article  CAS  Google Scholar 

  51. de Soares, R.P., Gerber, R.P.: Functional-segment activity coefficient model. 1. Model formulation. Ind. Eng. Chem. Res. 52, 11159–11171 (2013)

    Article  CAS  Google Scholar 

  52. Fingerhut, R., Chen, W.-L., Schedemann, A., Cordes, W., Rarey, J., Hsieh, C.-M., Vrabec, J., Lin, S.T.: Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria. Ind. Eng. Chem. Res. 56, 9868–9884 (2017)

    Article  CAS  Google Scholar 

  53. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  54. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatog. A 1037, 29–47 (2004)

    Article  CAS  Google Scholar 

  55. Acree Jr., W.E., Abraham, M.H.: The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J. Chem. Technol. Biotech. 81, 1441–1446 (2006)

    Article  CAS  Google Scholar 

  56. Abraham, M.H., Acree Jr., W.E.: Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chem. 8, 906–915 (2006)

    Article  CAS  Google Scholar 

  57. Endo, S., Brown, T.N., Watanabe, N., Ulrich, N., Bronner, G., Abraham, M.H., Goss, K.-U.: UFZ-LSER database v 3.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2015 [accessed on 08.11.2016]. Available from http://www.ufz.de/lserd. Accessed Sep 17 2017

  58. Sprunger, L., Clark, M., Acree Jr., W.E., Abraham, M.H.: Characterization of room-temperature ionic liquids by the Abraham model with cation-specific and anion-specific equation coefficients. J. Chem. Inf. Model. 47, 1123–1129 (2007)

    Article  CAS  Google Scholar 

  59. Sprunger, L.M., Proctor, A., Acree Jr., W.E., Abraham, M.H.: LFER correlations for room temperature ionic liquids: separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilib. 265, 104–111 (2008)

    Article  CAS  Google Scholar 

  60. Sprunger, L.M., Gibbs, J., Proctor, A., Acree Jr., W.E., Abraham, M.H., Meng, Y., Yao, C., Anderson, J.L.: Linear free energy relationship correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space. Ind. Eng. Chem. Res. 48, 4145–4154 (2009)

    Article  CAS  Google Scholar 

  61. Stephens, T.W., Chou, V., Quay, A.N., Shen, C., Dabadge, N., Tian, A., Loera, M., Willis, B., Wilson, A., Acree Jr., W.E., Twu, P., Anderson, J.L., Abraham, M.H.: Thermochemical investigations of solute transfer into ionic liquid solvents: updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions. Phys. Chem. Liq. 52, 488–518 (2014)

    Article  CAS  Google Scholar 

  62. Stephens, T.W., Hart, E., Kuprasertkul, N., Mehta, S., Wadawadigi, A., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into ionic liquid solvents: calculation of ion-specific equation coefficients for the 4,5-dicyano-2-(trifluoromethyl)imidazolide anion. Phys. Chem. Liq. 52, 777–791 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Xin Tong thanks the University of North Texas’s Texas Academy of Math and Science (TAMS) program for a summer research award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Acree Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutelet, F., Ravula, S., Baker, G.A. et al. Infinite Dilution Activity Coefficients and Gas-to-Liquid Partition Coefficients of Organic Solutes Dissolved in 1-Benzylpyridinium Bis(Trifluoromethylsulfonyl)Imide and 1-Cyclohexylmethyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Imide. J Solution Chem 47, 308–335 (2018). https://doi.org/10.1007/s10953-018-0720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0720-5

Keywords

Navigation