Skip to main content
Log in

Solvent Basicity, A Study of Kamlet–Taft β and Gutmann DN Values Using Computationally Derived Molecular Properties

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solvent basicity is recognized as playing a major role in solvation and is included, through empirical basicity parameters, in linear free energy relationships that account for the effects of changes in solvent on chemical reactions. It is reasonable to postulate that the basicity of a solvent molecule reflects some combination of its molecular properties. In the present study, density functional calculations using the B3LYP functional, and Hartree–Fock calculations have been used to calculate the partial atomic charges (using the Hirshfeld and CM5 models), orbital energies, polarizabilities, dipole moments and quadrupolar amplitudes for over one hundred molecules for which there are experimental values for two basicity parameters, Kamlet and Taft’s hydrogen bond acceptor strength, β, and Gutmann’s donor number, DN, a measure of Lewis basicity. Regression of the experimental β and DN values against molecular descriptors reflecting the above molecular properties yields a remarkably consistent picture. For both parameters the values for alcohols and amines lie systematically off of the regression lines through the remaining compounds, which include alkanes, aromatics, halogenated alkanes and aromatics, esters, carbonates, carboxylic acids, ketones, ethers, nitriles, phosphates, sulfides and sulfates. Independent of the calculation method or method of estimating the partial atomic charges, both experimental β and DN are essentially determined by two molecular properties: the charge on the most negative atom of the molecule and the molecular orbital from which charge donation would occur. The regression results using any of the fours sets of descriptors (reflecting the two calculation methods and two methods of charge estimation) are remarkably similar for β and DN supporting the view that these are measures of the same “basicity”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The quadrupolar amplitude is calculated as \( A = \sqrt {\sum {q_{ij} q_{ij}}} \quad i = x,y,z\quad j = x,y,z \) where the qij are the components of the traceless quadrupole.

References

  1. Svante Arrhenius, S.A.: Recherches sur la Conductivité Galvanique des Électrolytes. Doctoral Dissertation, Stockholm, Royal Publishing House, P.A. Norstedt and Söner (1884)

  2. Brönsted, J.N.: Einige bemerkungen über den begriff der säuren und basen. Rec. des Trav. Chim. Pays-Bas 42, 718–728 (1923)

    Article  Google Scholar 

  3. Lowry, T.M.: The uniqueness of hydrogen. J. Soc. Chem. Ind. 42, 43–47 (1923)

    Article  CAS  Google Scholar 

  4. Lewis, G.N.: Valence and the Structure of Atoms and Molecules. American Chemical Society Monograph Series, vol. 14. The Chemical Catalog Co., Inc., New York (1923)

    Google Scholar 

  5. Jensen, W.B.: The Lewis acid–base definitions: a status report. Chem. Rev. 78, 1–22 (1978)

    Article  CAS  Google Scholar 

  6. Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships–local empirical rules or fundamental laws of chemistry—a reply to the chemometricians. Acta Chem. Scand. 39, 611–628 (1985)

    Article  Google Scholar 

  7. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  8. Sandström, M., Persson, I., Person, P.: A study of solvent electron-pair donor ability and Lewis basicity scales. Acta Chem. Scand. 44, 653–675 (1990)

    Article  Google Scholar 

  9. Gutmann, V.: Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661–670 (1976)

    Article  CAS  Google Scholar 

  10. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)

    Article  CAS  Google Scholar 

  11. Eckert, F., Clampt, A.: Accurate prediction of basicity in aqueous solution with COSMO-RS. J. Compd. Chem. 27, 11–19 (2006)

    Article  CAS  Google Scholar 

  12. Schwöbel, J., Ebert, R.-U., Kühne, R., Schüürmann, G.: Predictioon of the intrinsic hydrogen bond acceptor strength of organic compounds by local molecular parameters. J. Chem. Inf. Model. 49, 956–962 (2009)

    Article  Google Scholar 

  13. Green, A.J., Popelier, P.L.A.: Theoretical prediction of hydrogen-bond basicity pK BHX using quantum chemical topology descriptors. J. Chem. Inf. Model. 54, 553–561 (2014)

    Article  CAS  Google Scholar 

  14. Kaupmees, K., Trummal, A., Leito, I.: Basicities of strong bases in water: a computational study. Croat. Chem. Acta 87, 385–395 (2014)

    Article  Google Scholar 

  15. Le Questel, J.-Y., Berthelot, M., Laurence, C.: Can semi-empirical calculations yield reasonable estimates of hydrogen-bonding basicity? The case of nitriles. J. Chem. Soc. Perkin Trans 2, 711–719 (1997)

    Google Scholar 

  16. Seybold, P.G., Kreye, W.C.: Theoretical estimation of the acidities of alcohols and azoles in gas phase, DMSO and water. Int. J. Quant. Chem. 112, 3769–3776 (2012)

    Article  CAS  Google Scholar 

  17. Safi, Z.S., Omar, S.: Proton affinity and molecular basicity of m- and p-supstituted benzamieds in gas phase and solution: a theoretical study. Chem. Phys. Lett. 611–612, 321–330 (2014)

    Article  Google Scholar 

  18. Katritzky, A.R., Fara, D.C., Yang, H., Tamm, K., Tamm, T., Karelson, M.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)

    Article  CAS  Google Scholar 

  19. Devereux, M., Popelier, P.L.A., McLay, I.M.: A refined model for prediction of hydrogen bond acidity and basicity parameters from quantum mechanical descriptors. Phys. Chem. Chem. Phys. 11, 1595–1603 (2009)

    Article  CAS  Google Scholar 

  20. Caclelli, I., Campanile, S., Giolitti, A., Molin, D.: Theoretical prediction of Abraham hydrogen bond acidity and basicity factors from a reaction field method. J. Chem. Inf. Model. 45, 3237–3333 (2005)

    Google Scholar 

  21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed. Gaussian, Inc., Wallingford, CT (2009)

  22. Hahn, S., Miller, W.M., Lichtehthaler, R.N., Prausnitz, J.M.: Donor number estimation for oxygen- and nitrogen-containing solvents via proton NMR shift of chloroform. J. Solution Chem. 14, 129–137 (1985)

    Article  CAS  Google Scholar 

  23. Rzeszotarska, J., Ranachowski, P., Kalinowski, M.K.: Donor numbers in binary mixtures of dimethyl sulfoxide with dipolar aprotic solvents. Collect. Czech. Chem. Commun. 59, 2201–2208 (1994)

    Article  CAS  Google Scholar 

  24. Greenberg, M.S., Popov, A.I.: Spectroscopic studies of ionic solvation. 17. Studies of preferential solvation of sodium ion in non-aqueous mixed solvent by 23Na nuclear magnetic resonance. Spectrochim. Acta A 31, 697–705 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by University College Dublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Earle Waghorne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Supplementary material 1 (XLS 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earle Waghorne, W., O’Farrell, C. Solvent Basicity, A Study of Kamlet–Taft β and Gutmann DN Values Using Computationally Derived Molecular Properties. J Solution Chem 47, 1609–1625 (2018). https://doi.org/10.1007/s10953-018-0791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0791-3

Keywords

Navigation