Skip to main content
Log in

Volumetric Properties of Binary and Ternary Solutions in the Water–Urea–Ammonium Sulfamate System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of liquid phases in the water–urea–ammonium sulfamate ternary system and in the binary water–ammonium sulfamate subsystem were investigated in a wide concentration range at 288.15, 298.15 and 323.15 K. A volumetric model of the aqueous ternary solutions was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uchida, S., Ito, Y., Kobayashi, E.: The reaction products of ammonia and sulfur trioxide. III. The system ammonium sulfamate–ammonium sulfate–water. Nippon Kagaku Zasshi 75, 743–746 (1954)

    Article  CAS  Google Scholar 

  2. Ricci, J.E., Selikson, B.: Aqueous solubilities of some sulfamates, and the system ammonium sulfamate–sulfarnic water at \(25\,^\circ {\rm C}\). J. Am. Chem. Soc. 69, 995–998 (1947)

  3. Ricci, J.E., Selikson, B.: Some aqueous systems involving sulfamates. J. Am. Chem. Soc. 74, 1956–1962 (1951)

    Article  Google Scholar 

  4. Dieter, F.F., Heinz, E.H.: Ammonium sulfate–ammonium nitrate–ammonium amidosulfate–water system. quaternary system. Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie “Carl Schorlemmer”. Leuna-Merseburg 14, 313–318 (1972)

  5. Frederick, L.R., Starkey, R.L., Secal, W.: Decomposability of some organic sulfur compounds in soil. Soil Sci. Soc. Am. J. 21, 287–292 (1957)

    Article  CAS  Google Scholar 

  6. Perman, E.P., Price, T.W.: Vapour pressure of concentrated aqueous solutions. Trans. Faraday Soc. 8, 68–81 (1912)

    Article  Google Scholar 

  7. Perman, E.P., Lovett, T.: Vapour pressure and heat of dilution of aqueous solutions. Trans. Faraday Soc. 22, 1–19 (1926)

    Article  Google Scholar 

  8. Gucker, F.T., Ayres, F.D.: The specific heats of aqueous solutions of urea from 2 to \(40^\circ \) and the apparent molal heat capacity of urea. J. Am. Chem. Soc. 59, 2152–2155 (1937)

    Article  CAS  Google Scholar 

  9. Gucker, F.T., Gage, F.W., Moser, C.E.: Densities of aqueous solutions of urea at \(25\,^\circ {\rm C}\) and \(30\,^\circ {\rm C}\) and the apparent molal volume of urea. J. Am. Chem. Soc. 60, 2582–2588 (1938)

  10. Wolf, A.V.: Aqueous Solutions and Body Fluids. Their Concentrative Properties and Conversion Tables. Hoeber Medical Division, Harper & Row Publishers, New York (1966)

  11. Egan, E.P., Luff, B.B.: Heat of solution, heat capacity, and density of aqueous urea solutions at \(25\,^\circ {\rm C}\). J. Chem. Eng. Data 11, 192–194 (1966)

  12. Boje, L., Hvidt, A.: Densities of aqueous mixtures of non-electrolytes. J. Chem. Thermodyn. 3, 663–673 (1971)

    Article  Google Scholar 

  13. Surdo, A.L., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at \(25\,^\circ {\rm C}\). J. Chem. Eng. Data 23, 197–201 (1978)

  14. Singh, M., Ram, B.: Effect of urea, its concentration and temperature on water structure. Asian J. Chem. 10, 510–517 (1998)

    CAS  Google Scholar 

  15. Hakin, A.W., Beswick, C.L., Duke, M.M.: Thermochemical and volumetric properties of aqueous urea systems. Heat capacities and volumes of transfer from water to urea–water mixtures for some 1:1 electrolytes at 298.15 K. J. Chem. Soc., Faraday Trans. 92, 207–214 (1996)

    Article  CAS  Google Scholar 

  16. Motin, M.A., Biswas, T.K., Huque, E.M.: Volumetric and viscometric studies on an aqueous urea solution. Phys. Chem. Liq. 40, 593–605 (2002)

    Article  CAS  Google Scholar 

  17. Hagen, R., Behrends, R., Kaatze, U.: Acoustical properties of aqueous solutions of urea: Reference data for the ultrasonic spectrometry of liquids. J. Chem. Eng. Data 49, 988–991 (2004)

    Article  CAS  Google Scholar 

  18. Singh, M., Kumar, A.: Hydrophobic interactions of methylureas in aqueous solutions estimated with density, molar volume, viscosity and surface tension from 293.15 to 303.15 K. J. Solution Chem. 35, 567–582 (2006)

    Article  CAS  Google Scholar 

  19. Krakowiak, J., Wawer, J., Panuszko, A.: Densimetric and ultrasonic characterization of urea and its derivatives in water. J. Chem. Thermodyn. 58, 211–220 (2013)

    Article  CAS  Google Scholar 

  20. Picker, P., Leduc, P.A., Philip, P.R., Desnoyers, J.E.: Heat capacities of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

  21. Causi, S., De Lisi, R., Milioto, S., Tirone, N.: Dodecyltrimethylammonium bromide in water–urea mixtures. Volumes, heat capacities and conductivities. J. Phys. Chem. 95, 5664–5673 (1991)

    Article  CAS  Google Scholar 

  22. Kawahara, K., Tanford, C.: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241, 3228–3232 (1966)

    CAS  Google Scholar 

  23. Brown, B.R., Gould, M.E., Ziemer, S.P., Niederhauser, T.L., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous urea, 1,1-dimethylurea, and N,N’-dimethylurea at temperatures from (278.15 to 348.15) K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 38, 1025–1035 (2006)

    Article  CAS  Google Scholar 

  24. Schmelzle, A.F., Westfall, I.E.: The relative viscosity of aqueous solutions of sulfamic acid and of some of its salts at \(25\,^\circ {\rm C}\). J. Phys. Chem. 48, 165–168 (1944)

  25. Synowietz, C., Schäfer, K.: Densities of Binary Aqueous Systems and Heat Capacities of Liquid Systems \({\rm N_2H_5Cl}\)\({\rm NaJO_4}\). Landolt-Börnstein—Group IV Physical Chemistry 1b. Springer, Heidelberg (1977)

  26. Maurey, J.R., Wolff, J.: The partial molal volumes of \({\rm OCN^-}\), \({\rm SeCN^-}\), \({\rm ReO_4^-}\) , \({\rm BF_4^-}\) , \({\rm SO_3F^-}\) , \({\rm SO_3NH_2^-}\). J. Inorg. Nucl. Chem. 25, 312–314 (1963)

  27. Pitzer, K.S., Simonson, J.M.: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. J. Phys. Chem. 90, 3005–3009 (1986)

    Article  CAS  Google Scholar 

  28. Clegg, S.L., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes. J. Phys. Chem. 96, 3513–3520 (1992)

    Article  CAS  Google Scholar 

  29. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  30. Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  31. Lide, D.R.: CRC Handbook of Chemistry and Physics, 84th edn. CRC Press LLC, Boca Raton (2003–2004)

  32. Edward Cain, B., Kanda, F.A.: The crystal structure of ammonium sulfamate. Z. Kristallogr. 135, 253–261 (1972)

    Article  Google Scholar 

  33. Kosova, D.A., Voskov, A.L., Kovalenko, N.A., Uspenskaya, I.A.: A water—urea—ammonium sulfamate system: Experimental investigation and thermodynamic modelling. Fluid Phase Equilibr. 425, 312–323 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed at the User Facilities Center of M.V. Lomonosov Moscow State University. The investigations were supported by the URALCHEM OJSC. The authors acknowledge partial support from the M.V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria A. Kosova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosova, D.A., Voskov, A.L. & Uspenskaya, I.A. Volumetric Properties of Binary and Ternary Solutions in the Water–Urea–Ammonium Sulfamate System. J Solution Chem 45, 1182–1194 (2016). https://doi.org/10.1007/s10953-016-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0500-z

Keywords

Navigation