Skip to main content
Log in

Volumetric and Thermodynamic Studies on Urea–Water System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Urea, as a nonelectrolyte molecular solute in aqueous solutions, has a vital role in the thermodynamic, thermophysical and physiochemical studies. To a large extent, addition of Urea to water does not alter the structural dynamics of water. Only a little amount of water molecules is supposed to be closely associated with urea molecules. Therefore, study of intramolecular as well as intermolecular interactions in the binary aqueous urea solution by conducting thermophysical and thermodynamic investigations is quite important. In this work, new experimental data on water activity for solutions containing urea under precisely controlled conditions and derived thermodynamic parameters were reported. Water activity of urea was also estimated from the Kirkwood–Buff integrals in a novel way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Debye–Huckel constant at 298.15 K

a w :

Water activity

B,C,D,E,F :

Adjustable coefficients

G ii :

Self-interaction parameter (KB integral)

G ij :

Mutual interaction parameter (KB integral)

G jj :

Self-interaction parameter (KB integral)

I :

Ionic strength in molal scale (mol·kg−1)

k B :

Boltzmann constant

KB:

Kirkwood–Buff theory

k N :

Norrish constant

m :

Solute concentration in molal scale (mol·kg−1)

M w :

Molecular mass of water (18.015 kg·kmol−1)

n :

Constant in Chen [38] equation

p :

Partial pressure of H2O in solution (Pa)

p o :

Vapour pressure of pure H2O (Pa)

R :

Gas constant

T :

Temperature (K)

x 1 :

Mole fraction of urea

x 2 :

Molegraction of water

z :

The ionic charge

γ :

Activity coefficient

μ :

Chemical potential

ρ :

Density (g·mL1 or kg·L1)

ϕ :

Osmotic coefficient

v - :

No. of anions

v :

Total no. of ions (v = v+ + v-)

v + :

No. of cations

β :

Constant in Chen [38] equation

References

  1. Wu, X., Guo, X., Zhang, J., Bi, D.: Industrial experiment on NOx reduction by urea solution injection in the fuel rich zone of a 330 MW tangentially pulverized coal-fired boiler. ACS Omega 7, 11851–11861 (2022)

    Google Scholar 

  2. https://dieselnet.com/tech/cat_scr_diesel.php#:~:text=Urea%20solution%E2%80%94called%20AdBlue%20or,to%20achieve%20high%20NOx%20conversions. Accessed 12 Dec 2023.

  3. Wetlaufer, D.B., Malik, S.K., Stroller, L., Coffin, R.L.: Nonpolar group participation in the deneturation of proteins by urea and guanidinium salts. Model compound study. J. Am. Chem. Soc. 86, 508–514 (1964)

    Article  CAS  Google Scholar 

  4. Finer, E.G., Franks, F., Tait, M.J.: Nuclear magnetic resonance studies of aqueous urea solutions. J. Am. Chem. Soc. 94, 4424–4429 (1972)

    Article  CAS  Google Scholar 

  5. Hoccart, X., Turrel, G.: Raman spectroscopic investigations of the dynamics of urea-water complex. J. Chem. Phys. 99, 8498–8503 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Vanzi, F., Madan, B., Sharp, K.: Effect of the protein denaturants urea and guanidinium on water structure: a structural and thermodynamic study. J. Am. Chem. Soc. 120, 10748–10753 (1998)

    Article  CAS  Google Scholar 

  7. Chitra, R., Smith, P.E.: Molecular dynamics simulation of the properties of covalent solutions. J. Phys. Chem. 104, 5854–5864 (2000)

    Article  CAS  Google Scholar 

  8. Lee, M.E., van der Vegt, N.F.A.: Does urea denature hydrophobic interactions? J. Am. Chem. Soc. 128, 4948–4949 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Rezus, Y.L.A., Bakker, H.J.: Effect of urea on structural dynamics of water. PNAS 103, 18417–18420 (2006)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Scatchard, G., Hamer, W.J., Wood, C.E.: Isotonic solutions: I the chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25 °C. J. Am. Chem. Soc. 60, 3061–3070 (1938)

    Article  CAS  Google Scholar 

  11. Venkatesan, V.K., Suryanarayana, C.V.: Conductance and other physical properties of urea solutions. J. Phys. Chem. 60, 775–776 (1956)

    Article  CAS  Google Scholar 

  12. Egan, E.P., Luff, B.B.: Heat of solution, heat capacity and density of aqueous urea solutions at 25 °C. J. Chem. Eng. Data 11, 192–194 (1966)

    Article  CAS  Google Scholar 

  13. Kawahara, K., Tanford, C.: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241, 3228–3232 (1966)

    Article  PubMed  CAS  Google Scholar 

  14. Stokes, R.H.: Thermodynamics of aqueous urea solutions. Aust. J. Chem. 20, 2087–2100 (1967)

    Article  CAS  Google Scholar 

  15. Boje, L., Hvidt, A.: Densities of aqueous mixtures of non-electrolyte. J. Chem. Thermodyn. 3, 663–673 (1971)

    Article  Google Scholar 

  16. Hakin, A.W., Beswik, C.L., Duke, M.M.: Thermochmical and volumetric properties of aqueous urea systems- Heat capacitities and volumes of transfer from ewater to urea-water mixtures for some 1:1 electrolytes at 298.15 K. J. Chem. Soc. Faraday Trans. 92, 207–214 (1996)

    Article  CAS  Google Scholar 

  17. Miyawaki, O., Saito, A., Matsuo, T., Nakamura, K.: Activity and activity coefficients of water in aqueous solutions and their relationship with solution structure parameters. Biosci. Biotechnol. Biochem. 61, 466–469 (1997)

    Article  CAS  Google Scholar 

  18. Motin, M.A., Biswas, T.K., Huque, E.M.: Volumetric and viscometeric studies on an aqueous urea solution. Phys. Chem. Liq. 40, 593–605 (2002)

    Article  CAS  Google Scholar 

  19. Korolov, V.P.: Volume properties and structure of aqueous solutions of urea at 263–348 K. J. Struct. Chem. 49, 660–667 (2008)

    Article  CAS  Google Scholar 

  20. Zozwiak, M., Tyczynska, M.: Volumetric properties of urea in the mixtures of N, N-dimethylformamide with water. J. Chem. Eng. Data 57, 2067–2075 (2012)

    Article  Google Scholar 

  21. Sadegi, M., Held, C., Samieenasab, A., Ghotbi, C., Abdekhodaie, M.J., Taghikhani, V., Sadowski, G.: Thermodynamic properties of aqueous salt containing urea solutions. Fluid Phase Equil. 325, 71–79 (2012)

    Article  Google Scholar 

  22. Maneffa, A., Stenner, R., Matharu, A.S., Clark, J.H., Matubayasi, N., Shimizu, S.: Water activity in liquid food systems: a molecular scale interpretation. Food Chem. 237, 1133–1138 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Khatun, R., Sultana, R., Nath, R.K.: Volumetric and ultrasonic velocity studies of urea and thiourea in aqueous solutions. Orient. J. Chem. 34, 1755–1764 (2018)

    Article  CAS  Google Scholar 

  24. Zuorro, A.: Water activity prediction in sugar and polyol systems using theoretical molecular descriptors. Int. J. Mol. Sci. 22, 11044 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Staples, B.R.: Activity and osmotic coefficients of aqueous alkali metal nitrites. J. Phys. Chem. Ref. Data 10, 765–777 (1981)

    Article  ADS  CAS  Google Scholar 

  26. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of univalent electrolytes in water. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  ADS  CAS  Google Scholar 

  27. Margules, M.: On the compositions of the saturated vapours of mixtures (in German). Meeting Reports of the Imperial Academy of Sciences, Vienna mathematics and Natural Sciences Class-II 104, 1243 (1895)

    Google Scholar 

  28. Norrish, R.S.: An equation for the activity coefficients and equilibrium relative humidities of water in confectionary syrups. J. Food Technol. 1, 25–39 (1966)

    Article  CAS  Google Scholar 

  29. Hildebrand, J.H.: Solubility. XII Regular solutions. J. Am. Chem. Soc. 51, 66–80 (1929)

    Article  CAS  Google Scholar 

  30. Hildebrand, J.H., Scott, R.L.: The Solubility of Nonelectrolytes. Dover, New York (1964)

    Google Scholar 

  31. Venetsanos, F., Anogiannakis, S.D., Theodorou, D.N.: Mixing thermodynamics and Flory Huggins interaction parameter of polyethylene oxide/prolypropylene oligomeric blends from Kirkwodd-Buff theory and molecular simulations. Macromolecules 55, 4852–4862 (2022)

    Article  ADS  CAS  Google Scholar 

  32. Ploetz, E.A., Bententis, N., Smith, P.E.: Kirkwood–Buff integrals for ideal solutions. J. Chem. Phys. 132, 164501 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Weerasinghe, S., Smith, P.E.: A Kirkwood–Buff derived force field for mixtures of urea and water. J. Phys. Chem. 107, 3891–3898 (2003)

    Article  CAS  Google Scholar 

  34. https://www.astm.org/d1193-99.html. Accessed 27 Oct 2023.

  35. https://www.astm.org/standards/d4052.html. Accessed 27 Oct 2023.

  36. Makarov, D.M., Egorov, G.I.: Density and volumetric properties of the aqueous solutions of urea at temperatures from T = (273 to 333) K and pressures up to 100 MPa. J. Chem. Thermodyn. 120, 164–173 (2018)

    Article  CAS  Google Scholar 

  37. Ivanov, E.V., Abrosimov, V.K.: Apparent molar volumes and expansibilities of thiourea, 1,3-dimethylurea and 1,3-dimethylthiourea in water at temperatures from T=(278.15 to 318.15)K and atmospheric pressure. J. Chem. Eng. Data 58, 1103–1111 (2013)

    Article  CAS  Google Scholar 

  38. Chen, C.S.: Water activity-concentration models for solutions of sugars, salts and acids. J. Food Sci. 45, 1318–1321 (1989)

    Article  Google Scholar 

  39. Chiba, S., Furuta, T., Shimizu, S.: Kirkwood–Buff integrals for aqueous urea solutions based upon quantum chemical electrostatic potential and interaction energies. J. Phys. Chem. 120, 7714–7723 (2016)

    Article  CAS  Google Scholar 

  40. Kappenstein, A.C., Moisy, Ph., Cote, G., Blanc, P.: Contribution of the concept of simple solution to calculation of the stoichiometric activity coefficients and densities of ternary mixtures of hydroxylammonium or hydrazinium nitrate with nitric acid and water. Phys. Chem. Chem. Phys. 2, 2725–2730 (2000)

    Article  CAS  Google Scholar 

  41. Ellerton, H.D., Dunlop, P.J.: Activity coefficients for the systems water–urea and water–urea–sucrose at 25° from isopiestic measurements. J. Phys. Chem. 70, 1831–1837 (1966)

    Article  CAS  Google Scholar 

  42. Stokes, R.H.: Osmotic coefficients of concentrated aqueous urea solutions from freezing point measurements. J. Phys. Chem. 70, 1199–1203 (1966)

    Article  PubMed  CAS  Google Scholar 

  43. Philip, P.R., Perron, G., Desnoyers, J.E.: Apparent molal volume and heat capacities of urea and methyl substituted ureas in H2O and D2O at 25 °C. Can. J. Chem. 52, 1709–1713 (1974)

    Article  CAS  Google Scholar 

  44. Frank, H.S., Franks, F.: Structural approach to solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968)

    Article  ADS  CAS  Google Scholar 

  45. Causi, S., De, L.R., Milioto, S., Tirone, N.: Dodecyltrimethylammonium bromide in water-urea mixtures: volume, heat capacities and conductivities. J. Phys. Chem. 95, 5664–5673 (1991)

    Article  CAS  Google Scholar 

  46. Rosgen, J., Jackson-Atogi, R.: Volume exclusion and H-bonding dominate the thermodynamics and salvation of trimethyleamine-N-oxide in aqueous urea. J. Am. Chem. Soc. 134, 3590–3597 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Desrosiers, N., Perron, G., Mathieson, J.G., Conway, B.E., Desnoyers, J.E.: Thermodynamic properties of alkali halides. IV. Apparent molal volume, expansivities, compressibilities and heat capacities in urea-water mixtures. J. Solution Chem. 10, 789–806 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sole author. Experimentation, data curation, writing and review.

Corresponding author

Correspondence to Shekhar Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. Volumetric and Thermodynamic Studies on Urea–Water System. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01364-w

Keywords

Navigation