Skip to main content
Log in

Hydrophobic Interactions of Methylureas in Aqueous Solutions Estimated with Density, Molal Volume, Viscosity and Surface Tension from 293.15 to 303.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Density (ρ), viscosity (η), and surface tension (γ) for 0.005–0.25 mol ⋅ kg−1 solutions of urea, 1-methylurea, and 1,3-dimethylurea solutions have been measured at intervals of 0.005 mol ⋅ kg−1. Apparent molal volume (V o, cm3 ⋅ mol−1) and intrinsic viscosity coefficients (B and D) are calculated from the ρ and η values, respectively. Primary data were regressed and extrapolated to zero concentration for the limiting density (ρ 0), apparent molal volume (V φ 0), viscosity (η 0), and surface tension (γ 0) values for solute–solvent interactions. The –CH3 (methyl) groups of N-methylureas weaken hydrophilic interactions and enhance hydrophobic interactions, and the values of the ρ 0 and V φ o reflect the intermolecular forces due to electrostatic charge, whereas the η 0 and γ 0 values reflect the frictional and surface forces. The B values depict the size of hydrodynamic sphere due to heteromolecular forces whereas D shows the effect of concentration. The molar surface energy (ΔE m/sur) for dropwise flow was calculated from the γ values and decreases with concentration and temperature, but increases with –CH3 weakening of the hydrophilic interactions and strengthening the hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barone, P. Cacace, and V. Elia, The Peptide Urea-interaction Excess Enthalpies of Ternary Aqueous Solution of Sacrosylsarcosine Diketopiperazine and Alkylureas at 298.15 K, J. Chem. Soc. Faraday Trans. 80, 2073–2086 (1984).

    Article  CAS  Google Scholar 

  2. K. N. Mehrotra and M. Anis, Apparent Molar Volume and Acoustic Behavior of Zirconyl Soap Solution in Benzene–Chloroform Mixture, J. Indian Chem. Soc. 74, 720–722 (1997).

    CAS  Google Scholar 

  3. E. Yilgor, E. Yurtsever, and I. Yilgor, Hydrogen Bonding and Polyurethane Morphology 2nd. Spectroscopic, Thermal and Crystallization Behavior of the Polymer Blends with 1,3-Dimethylurea and a Model Urethane Compound, Polymer 43, 6561–6568 (2002).

    Article  CAS  Google Scholar 

  4. L. Costantino, G. D. Errico, P. Roscigno, and V. Vitagliano, Effect of Urea and Alkylureas on Micelle Formation by Non-Ionic Surfactant with Short Hydrophobic Tail at 25.0 C, J. Phys. Chem. B 104, 7326–7333 (2000).

    Article  CAS  Google Scholar 

  5. F. Franks, in Biochemical Thermodynamics, M. N. Jones, Ed. (Elsevier, Amsterdam, 1979), Chap. 2.

  6. F. Franks, Water–A Comprehensive Treatise of Water, Vol. 4 (Plenum Press, New York, 1978).

    Google Scholar 

  7. J. A. Shellman and C. Schellman, The Proteins, Vol. 2. H. Neurath Ed. (Academic Press, New York, 1974).

  8. E. S. Cobos, V. V. Filimonov, A. Galvez, E. Valdivia, M. Maqueda, J. C. Martinez, and P. L. Mateo, The Denaturation of the Circular Enterocin A.S.-48 by Urea and Guanidiunuim Hydrochloride, Biochim. Biophys. Acta 1598, 98–107 (2002).

    PubMed  CAS  Google Scholar 

  9. A. Holtzer and M. F. Emerson, On the Utility of the Concept of Water Structure in the Rationalization of the Properties of Aqueous Solution Proteins and Small Molecules, J. Phys. Chem. 73, 26–33 (1969).

    Article  CAS  Google Scholar 

  10. P. R. Philip, G. Perron, and J. E. Desnoyers, Apparent Molal Volumes and Heat Capacities of Urea and Methyl Substituted Ureas in H2O and D2O at 25.0°C, Can. J. Chem. 52, 1709–1713 (1974).

    Article  CAS  Google Scholar 

  11. M. Singh and S. Kumar, Viscometric Studies of Poly(N-Vinyl-2-Pyrroliodone) in Water and in Water in 0.01% Bovine Serum Albumin at 283.15, 188.15, 293.15, 303.15, 308.15 and 313.15 K, J. Appl. Polym. Sci. 87, 1001–1015 (2002).

    Article  CAS  Google Scholar 

  12. F. Franks and J. E. Desnoyers, in Water Science Review, F. Franks Ed. (Cambridge University Press, Cambridge, 1985), 171 pp.

  13. K. J. Patil, G. R. Mehta, and S. S. Dhondge, Application of Kirkwood–Buff Theory of Liquid Mixture of Binary Aqueous Solution of Alcohol, Indian J. Chem. 33A, 1609–1074 (1994).

    Google Scholar 

  14. L. Ramesh, S. S. Dhondge, and M. N. Ray, Volumetric Compressibility Properties of Aqueous Solutions of Urea and Ethylene Glycol, Indian. J. Chem. 38A, 70–72 (1999).

    CAS  Google Scholar 

  15. R. H. Stokes, Protein Stability and Folding, Aust. J. Chem. 20, 2087–2100 (1967).

    Article  CAS  Google Scholar 

  16. K. Arakawaand and N. Takenaka, The Ultrasonic Study of Aqueous Solution of Urea, Bull. Chem. Soc. Jpn. 40, 2739–2742 (1967).

    Article  Google Scholar 

  17. K. Sasaki and K. Arakawa The Ultrasonic Study of Aqueous Solution of Alkyl Substituted Urea, Bull. Chem. Soc. Jpn. 42, 2485–2489 (1969).

    Article  CAS  Google Scholar 

  18. K. Arakawa, N. Takenaka, and K. Sasaki, Ultrasonic Study of Dilutes Aqueous Solutions of Urea, Guanidine Hydrochloride and Dioxane, Bull. Chem. Soc. Jpn. 43, 636–641 (1970).

    Article  CAS  Google Scholar 

  19. J. Lang, C. Tondre, and R. Zana, Effect of Urea and Other Organic Substances on the Ultrasonic Absorption of Protein Solution, J. Phys. Chem. 75, 374–379 (1971).

    Article  Google Scholar 

  20. J. D. Pandey, S. Haroon, K. Dubey, M. Upadhyaya, R. Dey, and K. Misra, Interaction of 6-Aminopurine (Adenine) in Water and Aqueous Urea Solutions, Can. J. Chem. 78, 1561–1569 (2000).

    Article  CAS  Google Scholar 

  21. C. A. Swenson and L. Koob, Nuclear Magnetic Resonance Study of the Exchange Rates of the Peptide Protons of the Glycylglycine and Triglycine in Water and Aqueous Urea, J. Phys. Chem. 74, 3376–3380 (1970).

    Article  CAS  Google Scholar 

  22. H. Schonert and L. Stroth, Thermodynamic Interactions between Urea and the Peptide Group in Aqueous Solutions at 25C, Biopolymers 20, 817–831 (1981).

    Article  Google Scholar 

  23. M. Roseman and W. P. Jencks, Interaction of Urea and Other Polar Compounds in Water, J. Amer. Chem. Soc. 97, 631–640 (1975).

    Article  CAS  Google Scholar 

  24. E. Yilgor, E. Yurtsever, and I. Yilgor, Hydrogen Bonding and Polyurethane Morphology 1st. Quantum Mechanical Calculation of Hydrogen Bond Energies and Vibrational Spectroscopy of Model Compounds, Polymer 43, 6551–6559 (2002).

    Article  CAS  Google Scholar 

  25. J. D. Pandey, K. Mishra, A. Shukla, V. Musharan, and R. D. Rai, Apparent Molal Volume, Apparent Molal Compressibility, Verification of Jones–Doles Equation and Thermodynamic Studies of Aqueous Urea and its Derivative at 25.0, 30.0, 35.0 and 40.0 C, Thermochim. Acta. 117, 245–259 (1987).

    Article  CAS  Google Scholar 

  26. V. Tu. Bezzabotnov, L. Cser, T. Grosz., G. Jancso, and Yu. M. Ostanevich, Small Angle Neutron Scattering in Aqueous Solutions of Tetramethylurea, J. Phys. Chem. 96, 976–982 (1992).

    Article  CAS  Google Scholar 

  27. H. Leiter, K. J. Patil, and H. G. Hertz, Search for Hydrophobic Association between Small Aprotic Solutes for an Application of the Nuclear Magnetic Relaxation Method, J. Solution Chem. 12, 503–517 (1983).

    Article  CAS  Google Scholar 

  28. J. J. Kozak, W. S. Knight, and W. Kauzmann, Solute–Solute Interaction in Aqueous Solution, J. Phys. Chem. 48, 675–690 (1968).

    Article  CAS  Google Scholar 

  29. K. J. Patil, A. M. Sagar, and D. H. Dagade, Osmotic and Activity Coefficient Studies on the Aqueous Solution of Tetramethylurea at 298.15 K, Indian. J. Chem. 41A, 1804–1811 (2002).

    CAS  Google Scholar 

  30. M. Singh, A Simple Instrument for Measuring the Surface Tension and Viscosity of Liquids, J. Instrum. Exp. Technol. 48, 270–271 (2005).

    Article  CAS  Google Scholar 

  31. M. Singh, H. Chand, and K. C. Gupta, Studies of Density, Apparent Molar Volume and Viscosity of Bovine Serum Albumin, Egg Albumin and Lysozyme in Aqueous and RbI, CsI and DTAB Aqueous Solution at 303.15 K, Chem. Biodiversity 2, 809–824 (2005).

    Article  CAS  Google Scholar 

  32. A. Apelblat and E. Manzurola, The Volumetric Properties of Water and Solution of Sodium Chloride and Potassium Chloride at Temperature from T = 277.15 K to T = 343.15 K at Molalties of (0.1, 0.5 and 1.0) mol kg-1, J. Chem. Thermodyn. 31, 869–893 (1999).

    Article  CAS  Google Scholar 

  33. N. B. Vargaftik, B. N. Volkov, and L. D. Volyak, International Tables of the Surface Tension of Water, J. Phys. Chem. Ref. Data 12, 817– 820 (1983).

    Google Scholar 

  34. N. Martinus, D. Crawford, D. Sinclair, and C. A. Vincent, The Extended Jones–Dole Equation, Electrochim. Acta 22, 1183–1187 (1977).

    Article  CAS  Google Scholar 

  35. Y. Marcus, Ion Solvation (John Wiley, New York, 1985), Chap. 7.

  36. K. Medda, P. Chatterjee, M. Pal, and S. Bagchi, The Density of Aqueous Solutions of Urea at 25.0 and 30.0 C and the Apparent Molal Volume of Urea, J. Solution Chem. 19, 271–287 (1990).

    Article  CAS  Google Scholar 

  37. F. T. Gucker, F. W. Cage, and C. E. Moser, The Density of Aqueous Solutions of Urea at 25.0 and 30.0 C and the Apparent Molal Volume of Urea, J. Amer. Chem. Soc. 60, 2582–2588 (1938).

    Article  CAS  Google Scholar 

  38. N. L. David and C. M. Michael, Lehninger Principles of Biochemistry, 3rd edn. (Macmillan Worth Publishers, 2001–2002), 89 pp.

  39. S. Lubert, Biochemistry, 4th edn., W. H. Freeman, New York 1995, 185–186 pp.

  40. G. Barone, E. Rizzo, and V. Vitagliano, Opposite Effect of Urea and Some of its Derivatives on Water Structure, J. Phys. Chem. 74, 2230–2232 (1970).

    Article  CAS  Google Scholar 

  41. K. Sasaki and K. Arakawa, Ultrasonic and Thermodynamic Studies on the Aqueous Solution of Tetramethylurea, Bull. Chem. Soc. Jpn. 46, 2738–2741 (1973).

    Article  CAS  Google Scholar 

  42. J. Cohn and J. T. Edsall, Proteins, Amino Acids and Peptides (Reinhold Publishing Corporation, New York, USA, 1943).

    Google Scholar 

  43. M. Singh, Studies of Molecular Interaction of Amino Acids in Aqueous and Cationic Surfactant Systems Investigated from their Densities and Apparent Molar Volume at 283.15, 288.15 and 393.15K, Pak. J. Sci. Ind. Res. 48 (2005), in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Kumar, A. Hydrophobic Interactions of Methylureas in Aqueous Solutions Estimated with Density, Molal Volume, Viscosity and Surface Tension from 293.15 to 303.15 K. J Solution Chem 35, 567–582 (2006). https://doi.org/10.1007/s10953-005-9008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-9008-7

Key Words

Navigation