Skip to main content
Log in

Water Activities and Equilibrium Phase Behavior for the Binary K3PO4(aq), K2SO4(aq) and the Ternary K3PO4 + K2SO4 + H2O Systems at Various Temperatures from 298.15 to 353.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic properties of the aqueous binary and ternary potassium phosphate or/and sulfate solutions were studied at various temperatures from 298.15 to 353.15 K. The water activity measurements for the binary K2SO4(aq), K3PO4(aq) and the ternary K3PO4 + K2SO4 + H2O systems were performed from dilute to saturated solution using the hygrometric method. The modeling approach based on the ion interaction model was developed to evaluate the thermodynamic properties. From these measurements of phosphate and sulfate salts, the ion-interaction parameters β(0), β(1), and Cϕ in binary solutions were determined at various temperatures, and used to calculate the osmotic and activity coefficients of these aqueous solutions. The water activity of mixed salts solutions and related properties such as osmotic and activity coefficients are reported at four different temperatures. The osmotic coefficients and binary parameters were used to evaluate the mixing parameters \( \theta_{{{\text{PO}}_{ 4} , {\text{SO}}_{ 4} }} \) and \( \psi_{{{\text{K,PO}}_{ 4} , {\text{SO}}_{ 4} }} \) in the mixed K3PO4 + K2SO4 + H2O solutions. The solubility measurements of the binary systems were carried out for K2SO4(s) and K3PO4(s) from 298.15 to 353.15 K, up to mmax(K3PO4(s)) = 8.90 mol·kg−1 and mmax(K2SO4(s)) = 1.20 mol·kg−1 at 353.15 K, respectively. The thermodynamic characteristics, solubility products \( K_{\text{SP}}^{^\circ } \) and the excess Gibbs energies of K2SO4(aq) and K3PO4(aq) are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kilmer, V.J., Younts, S.E., Brady, N.C.: The Role of Potassium in Agriculture. ASA, Madison (1968)

    Google Scholar 

  2. Miwa, E., Kurihara, K.: Studies on controlled potassium fertilizers I. Relative effectiveness of various hardly soluble potassium compounds as source of slow-release. Soil Sci. Plant Nutr. 20, 403–411 (1974)

    Article  CAS  Google Scholar 

  3. Frazier, A.W., Smith, J.P., Lehr, J.R.: Impurities from phosphoric acid, precipitated impurities in fertilizers prepared from wet-process phosphoric acid. J. Agric. Food Chem. 14, 522–529 (1966)

    Article  CAS  Google Scholar 

  4. Grzmil, B., Kic, B.: Potassium, sodium and calcium polyphosphates with controlled solubility. J. Agric. Food Chem. 43, 2463–2470 (1995)

    Article  CAS  Google Scholar 

  5. Grzmil, B.: Effect of potassium sulfate on the dehydration of orthophosphates. Ind. Eng. Chem. Res. 37, 3741–3747 (1998)

    Article  CAS  Google Scholar 

  6. Gioia, F., Mura, G., Viola, A.: Analysis, simulation, and optimization of the hemihydrate process for the production of phosphoric acid from calcareous phosphorites. Ind. Eng. Chem. Process. Des. Dev. 16, 390–399 (1977)

    Article  Google Scholar 

  7. Van Der Sluis, S., Meszaros, Y., Wesselingh, J.A., Van Rosmalen, G.M.: A Clean Technology Phosphoric Acid Process. The Fertiliser Society, London (1986)

    Google Scholar 

  8. Azaroual, M., Kervevan, C., Lassin, A., Andre, L., Amalhay, M., Khamar, L., El Guendouzi, M.: Thermo-kinetic and physico-chemical modeling of processes generating scaling problems in phosphoric acid and fertilizers production industries. Proced. Eng. 46, 68–75 (2012)

    Article  CAS  Google Scholar 

  9. Khamar, L., El Guendouzi, M., Amalhay, M., Aboufaris, M., Rifai, A., Faridi, J., Azaroual, M.: Evolution of soluble impurities concentrations in industrial phosphoric acid during the operations of desupersaturation. Proced. Eng. 83, 243–249 (2014)

    Article  CAS  Google Scholar 

  10. El Guendouzi, M., Errougui, A.: Solubility in the ternary aqueous systems containing M, Cl, NO3 , and SO4 2− with M = NH4 +, Li+, or Mg2+ at T = 298.15 K. J. Chem. Eng. Data 54, 376–381 (2009)

    Article  Google Scholar 

  11. Waggaman, W.H.: Phosphoric Acid, Phosphates and Phosphate Fertilizers, 2nd edn. Rheinhold Publishing Corporation, New York (1952)

    Google Scholar 

  12. Varadachari, C.: Phosphoric acid, phosphates and fertilizers for the future. Proc. Indian Nat. Sci. Acad. B 58, 119–126 (1992)

    CAS  Google Scholar 

  13. El Guendouzi, M., Skafi, M., Rifai, A.: Hexafluorosilicate salts in wet phosphoric acid processes: properties of X2SiF6–H2O with X = Na+, K+, or NH4 + in aqueous solutions at 353.15 K. J. Chem. Eng. Data 61, 1728–1734 (2016)

    Article  Google Scholar 

  14. Åkerlöf, G., Thomas, H.C.: Study of the solubility of strong electrolytes in concentrated solutions. J. Am. Chem. Soc. 56, 593–601 (1934)

    Article  Google Scholar 

  15. Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of sodium sulfate, potassium sulfate, and magnesium sulfate at 373.15 and 423.65 K and of magnesium chloride at 373.15, 423.65 and 472.95 K. J. Chem. Eng. Data 28, 56–59 (1983)

    Article  CAS  Google Scholar 

  16. Archer, D.G., Kirklin, D.R.: Enthalpies of solution of sodium chloride and potassium sulfate in water, thermodynamic properties of the potassium sulfate + water system. J. Chem. Eng. Data 47, 33–46 (2002)

    Article  CAS  Google Scholar 

  17. Obsil, M., Majer, V., Grolier, J.P., Hefter, G.T.: Volumetric properties of, and ion-pairing in, aqueous solutions of alkali-metal sulfates under superambient conditions. J. Chem. Soc. Faraday Trans. 92, 4445–4451 (1996)

    Article  CAS  Google Scholar 

  18. Obsil, M., Majer, V., Hefter, G.T., Hynek, V.: Densities and apparent molar volumes of Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa. J. Chem. Eng. Data 42, 137–142 (1997)

    Article  CAS  Google Scholar 

  19. Das, B., Pitzer, K.S.: Thermodynamic properties of aqueous potassium sulfate under superambient conditions. J. Solution Chem. 28, 283–289 (1999)

    Article  CAS  Google Scholar 

  20. Palmer, D.A., Archer, D.G., Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of K2SO4(aq) at the temperatures 298.15 and 323.15 K, and revision of the thermodynamic properties of the K2SO4 + H2O system. J. Chem. Eng. Data 47, 1425–1431 (2002)

    Article  CAS  Google Scholar 

  21. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures VIII. The alkali-metal sulfates. J. Chem. Thermodyn. 18, 263–275 (1986)

    Article  CAS  Google Scholar 

  22. Holmes, H.F., Mesmer, R.E.: Thermodynamics of aqueous solutions of the alkali metal sulfates. J. Solution Chem. 15, 495–517 (1986)

    Article  CAS  Google Scholar 

  23. El Guendouzi, M., Mounir, A., Dinane, A.: Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T = 298.15 K. J. Chem. Thermodyn. 35, 209–220 (2003)

    Article  Google Scholar 

  24. Robinson, R.A., Wilson, J.M., Stokes, R.H.: The activity coefficients of lithium, sodium and potassium sulfate and sodium thiosulfate at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 63, 1011–1013 (1941)

    Article  CAS  Google Scholar 

  25. Harned, H.N., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions. Reinhold Publishing Corporation, New York (1958)

    Google Scholar 

  26. Ninković, R.R., Miladinović, J.M., Todorović, M.D., Rumyantsev, A.V., Bozović, B.R.: Osmotic coefficient of K2SO4(aq) in supersaturated solution at T = 298.15 K. J. Chem. Eng. Data 50, 735–741 (2005)

    Article  Google Scholar 

  27. El Guendouzi, M., Benbiyi, A.: Thermodynamic properties of binary aqueous solutions of orthophosphate salts, sodium, potassium and ammonium at T = 298.15 K. Fluid Phase Equilib. 369, 68–85 (2014)

    Article  Google Scholar 

  28. Scatchard, G., Breckenridge, R.C.: Isotonic solutions. II. The chemical potential of water in aqueous solutions of potassium and sodium phosphates and arsenates at 25 °C. J. Phys. Chem. 58, 596–602 (1954)

    Article  CAS  Google Scholar 

  29. El Guendouzi, M., Errougui, A.: Thermodynamic properties of ternary aqueous solutions with the common magnesium cation {Mg/Cl/NO3/SO4}(aq) at T = 298.15 K. J. Chem. Eng. Data 52, 2188–2194 (2007)

    Article  Google Scholar 

  30. Faridi, J., El Guendouzi, M.: Study ion-pairing and thermodynamic properties of sodium fluoride in aqueous solutions at temperatures from 298.15 K to 353.15 K. J. Solution Chem. 44, 2194–2207 (2015)

    Article  CAS  Google Scholar 

  31. El Guendouzi, M., Rifai, A., Faridi, J., Brevet, Cl.: International patent G01 N 19/10, No. MA 34777 B1 Morocco (2014)

  32. El Guendouzi, M., Aboufaris, M.: Comparative study of sodium phosphate and sodium sulfate in aqueous solutions at (298.15 to 353.15) K. J. Chem. Eng. Data 60, 2308–2319 (2015)

    Article  Google Scholar 

  33. Ahmed, M., Namboodiri, V., Singh, A.K., Mondal, J.A., Sarkar, S.K.: How ions affect the structure of water: a combined Raman spectroscopy and multivariate curve resolution study. J. Phys. Chem. B. 117, 16479–16485 (2013)

    Article  CAS  Google Scholar 

  34. Holmes, H.F., Simonson, J.M., Mesmer, R.E.: Aqueous solutions of the mono- and di-hydrogenphosphate salts of sodium and potassium at elevated temperatures. Isopiestic results. J. Chem. Thermodyn. 32, 77–96 (2000)

    Article  CAS  Google Scholar 

  35. Rudolph, W.: Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301 °C. J. Solution Chem. 41, 630–645 (2012)

    Article  CAS  Google Scholar 

  36. Turner, D.J.: Raman spectral study of bisulphate ion hydration. J. Chem. Soc. Faraday Trans. 68, 643–648 (1972)

    Article  CAS  Google Scholar 

  37. Nightingale, E.R.: In: Conway, B.E., Barradas, R.G. (eds.) Chemical Physics of Ionic Solutions. Wiley, New York (1966)

    Google Scholar 

  38. Chapman, A.C., Thirlwell, L.E.: Spectra of phosphorus compounds-I the infra-red spectra of orthophosphates. Spectrochim. Acta 20, 937–947 (1964)

    Article  CAS  Google Scholar 

  39. Preston, C.M., Adams, W.A.: A laser Raman spectroscopic study of aqueous orthophosphate salts. J. Phys. Chem. 83, 814–821 (1979)

    Article  CAS  Google Scholar 

  40. Sharygin, A.V., Inglese, A., Sedlbauer, J., Wood, R.H.: Apparent molar heat capacities of aqueous solutions of phosphoric acid and sulfur dioxide from 303 to 623 K and a pressure of 28 MPa. J. Solution Chem. 26, 183–197 (1997)

    Article  CAS  Google Scholar 

  41. Van Der Sluis, S.: A Clean Technology of Phosphoric Acid Process. Delft University Press, Delft (1987)

    Book  Google Scholar 

  42. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  43. Harvie, C.E., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 44, 981–997 (1980)

    Article  CAS  Google Scholar 

  44. Christov, C.: Thermodynamics of formation of ammonium, sodium and potassium alums and chromium alums. Calphad 26, 85–94 (2002)

    Article  CAS  Google Scholar 

  45. Pabalan, R.T., Pitzer, K.S.: Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O. Geochim. Cosmochim. Acta 51, 2429–2443 (1987)

    Article  CAS  Google Scholar 

  46. Linke, W.: Solubilities of Inorganic Compounds, vol. 2, 4th edn. American Chemical Society, Washington D.C (1965)

    Google Scholar 

  47. Eysseltova, J., Bouaziz, R.: IUPAC–NIST Solubility Data Series. 93. Potassium sulfate in water. J. Phys. Chem. Ref. Data 41, 1–48 (2012)

    Article  Google Scholar 

  48. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni–bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764 (1981)

    Article  CAS  Google Scholar 

  49. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  50. Hill, A.E.: Ternary systems. XIX. Calcium sulfate, potassium sulfate and water. J. Am. Chem. Soc. 56, 1071–1078 (1934)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed EL Guendouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboufaris El Alaoui, S.M., EL Guendouzi, M. Water Activities and Equilibrium Phase Behavior for the Binary K3PO4(aq), K2SO4(aq) and the Ternary K3PO4 + K2SO4 + H2O Systems at Various Temperatures from 298.15 to 353.15 K. J Solution Chem 47, 47–64 (2018). https://doi.org/10.1007/s10953-017-0703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0703-y

Keywords

Navigation