Skip to main content
Log in

Representation of Electrical Conductances by the Quint–Viallard Conductivity Equation. Part 6. Unsymmetrical 2:1 Type “Complex Ions” Electrolytes: Cadmium Bromide and Cadmium Iodide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Systematic and precise measurements of electrical conductivities of dilute aqueous solutions of cadmium bromide and cadmium iodide were performed from 15 to 35 °C. The conductances were interpreted in terms of a molecular model that includes a mixture of two 1:1 and 2:1 electrolytes. The molar limiting conductances of \( \lambda \) 0(CdX+, T) ions, the equilibrium constants of formation of CdX+ complexes K(T) and the corresponding standard thermodynamic functions were evaluated using the Quint–Viallard conductance equations, the Debye–Hückel equations for activity coefficients and the mass action equations. Mathematical representations are also presented to an extension of molecular models, to the simultaneous formation of MeX+ and MeX2 species and to the possibility of hydrolysis reactions with formation of Me(OH)+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. MacInnes, D.A.: The Principles of Electrochemistry, vol. 194, pp. 88–91. Dover, New York (1961)

    Google Scholar 

  2. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn, pp. 425–429. Butterworths, London (1965)

    Google Scholar 

  3. Kortüm, G.: Treatise on Electrochemistry, 2nd edn, pp. 238–240. Elsevier, Amsterdam (1965)

    Google Scholar 

  4. Butler, J.N., Cogley, D.R.: Ionic Equilibrium. Solubility and pH Calculations, pp. 240–256. Wiley, New York (1998)

    Google Scholar 

  5. Davies, C.W.: The Conductivity of Solutions, pp. 163–168. Wiley, New York (1930)

    Google Scholar 

  6. Riley, H.L., Gallafent, V.: A potentiometric investigation of electrolytic dissociation. Part I. Cadmium halides. J. Chem. Soc. 514–523 (1932)

  7. Bates, R.G., Vosburgh, V.C.: Equilibria in cadmium iodide solutions. J. Am. Chem. Soc. 60, 137–141 (1938)

    Article  CAS  Google Scholar 

  8. Korenman, I.M.: The instability constant of CdCl4 2−. Zh. Obshchei Khim. 18, 1233–1236 (1948)

    CAS  Google Scholar 

  9. Strocchi, P.M.: Contributo alla conoscenza del complessi del mercurio, cadmio, zinco. Note I. Gazz. Chim. Ital. 79, 41–50 (1949)

    CAS  Google Scholar 

  10. Strocchi, P.M.: Complessi del mercurio, cadmio, zinco. Note II. Gazz. Chim. Ital. 79, 270–279 (1949)

    CAS  Google Scholar 

  11. Strocchi, P.M.: Ricerche polarografiche sugli ioni complessi, I. Complessi alogenati del cadmio. Gazz. Chim. Ital. 80, 234–248 (1950)

    CAS  Google Scholar 

  12. Eriksson, L.: The complexity constants of cadmium chloride and bromide. Acta Chem. Scand. 7, 1146–1154 (1953)

    Article  CAS  Google Scholar 

  13. Vanderzee, C.E., Dawson Jr., H.L.: The stability constants of cadmium complexes: variation with temperature and ionic strength. J. Am. Chem. Soc. 75, 5659–5663 (1953)

    Article  CAS  Google Scholar 

  14. Gerding, P.: Thermochemical studies in metal complexes. I. Free energy, enthalpy, and entropy changes for stepwise formation of cadmium(II) halide complexes in aqueous solution at 25 °C. Acta Chem. Scand. 20, 79–94 (1966)

    Article  CAS  Google Scholar 

  15. Lutfullah, Paterson, R.: Stability constants for cadmium iodide complexes in aqueous cadmium iodide (298.15 K). J. Chem. Soc., Faraday Trans. I 74, 484–489 (1978)

  16. Marcus, Y.: Studies on the hydrolysis of metal ions. Part 20. The hydrolysis of the Cd ion, Cd2+. Acta Chim. Scand. 11, 690–692 (1957)

    Article  CAS  Google Scholar 

  17. Biedermann, G., Ciavatta, L.: Studies on the hydrolysis of metal ions. Part 41. The hydrolysis of the cadmium ion, Cd2+. Acta Chim. Scand. 16, 2221–2239 (1962)

    Article  CAS  Google Scholar 

  18. Dyrssen, D., Lumme, P.: Studies on the hydrolysis of metal ions. 40. A liquid distribution study of the hydrolysis of Cd2+. Acta Chim. Scand. 16, 1785–1793 (1962)

    Article  CAS  Google Scholar 

  19. Matsui, H., Othaki, H.: A study on the hydrolysis of cadmium ion in aqueous 3 M (Li)ClO4 solution. Bull. Chem. Soc. Japan 47, 2603–2604 (1974)

    Article  CAS  Google Scholar 

  20. Rai, D., Felmy, R.A., Szelmeczka, R.W.: Hydrolysis constants and ion-interaction parameters for cadmium(II) in zero to high concentration of sodium hydroxide–potassium hydroxide, and the solubility product of crystalline cadmium hydroxide. J. Solution Chem. 20, 375–390 (1991)

    Article  CAS  Google Scholar 

  21. Lucasse, W.W.: The transference numbers of cadmium chloride and bromide. J. Am. Chem. Soc. 51, 2605–2608 (1929)

    Article  CAS  Google Scholar 

  22. Leden, I.: Einige potentiometrische messungen zur bestimmung der komplexionen in cadmiumsalzlösungen. Z. Physik. Chem. A188, 160–181 (1941)

    CAS  Google Scholar 

  23. Alberty, R.A., King, E.L.: Moving boundary systems formed by weak electrolytes. Study of cadmium iodide complexes. J. Am. Chem. Soc. 75, 517–523 (1951)

    Article  Google Scholar 

  24. Vasilev, A.M., Proukhina, V.I.: Polarographic study of the stability of chlorine and bromine complexes of cadmium and lead. Zh. Anal. Khim. 6, 218–222 (1951)

    CAS  Google Scholar 

  25. Korshunov, I.A., Malyugina, N.I., Balabanova, O.M.: Polarographic study of complexes of cadmium with some univalent anions. Zh. Obshchei Khim. 21, 620–625 (1951)

    CAS  Google Scholar 

  26. Korshunov, I.A., Malyugina, N.I., Balabanova, O.M.: Polarographic study of complexes of cadmium with some univalent anions. Zh. Obshchei Khim. 21, 685–690 (1951)

    CAS  Google Scholar 

  27. Marple, L.W.: The sorption of metal complex species by anion exchange resin. I. Verification of the theoretical treatment of ion exchange equilibria based on the partition of uncharged complex species. J. Inorg. Nucl. Chem. 27, 1693–1700 (1965)

    Article  CAS  Google Scholar 

  28. Paterson, R., Anderson, J., Anderson, S.S.: Transport in aqueous solutions of group IIB metal salts at 298.15 K. Part 2. Interpretation and prediction of transport in dilute solutions of cadmium iodide. An irreversible thermodynamic analysis. J. Chem. Soc., Faraday Trans. I 73, 1773–1788 (1977)

    Article  CAS  Google Scholar 

  29. Ramette, R.M.: Equilibrium constants for cadmium bromide complexes by coulometric determination of cadmium iodate solubility. Anal. Chem. 55, 1232–1236 (1983)

    Article  CAS  Google Scholar 

  30. Pethybridge, A.: Study of association in unsymmetrical electrolytes by conductance measurements Part 1 Non-aqueous solutions. Z. Physik. Chem. N. F. 133, 143–158 (1982)

    Article  CAS  Google Scholar 

  31. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold, New York (1958)

    Google Scholar 

  32. Davies, C.W.: Ion Association. Butterworths, London (1962)

    Google Scholar 

  33. Fuoss, R.M., Edelson, D.: Bolaform electrolytes. I Di-(β-trimethylammonium ethyl)succinate dibromide and related compounds. J. Am. Chem. Soc. 73, 269–273 (1951)

    Article  CAS  Google Scholar 

  34. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 1. Relaxation terms. J. Chem. Soc., Faraday Trans. 2 74, 743–766 (1978)

    Article  CAS  Google Scholar 

  35. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2. Hydrodynamic terms and complete conductance equation. J. Chem. Soc. Faraday Trans. 2 74, 1456–1482 (1978)

    Article  CAS  Google Scholar 

  36. Quint, J., Viallard, A.: Relaxation field for the general case of electrolyte mixtures. J. Solution Chem. 7, 137–153 (1978)

    Article  CAS  Google Scholar 

  37. Quint, J., Viallard, A.: The electrophoretic effect for the case of electrolyte mixtures. J. Solution Chem. 7, 525–531 (1978)

    Article  CAS  Google Scholar 

  38. Quint, J., Viallard, A.: Electical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  39. Quint, J.: Contribution a l’étude de la conductibilité électrique de mélanges d’électrolytes. PhD. thesis, University of Clermont–Ferrand, April (1976)

  40. Chandler, E.E.: The ionization constants of the second hydrogen ion of dibasic acids. J. Am. Chem. Soc. 30, 694–713 (1909)

    Article  Google Scholar 

  41. Kohlrausch, F., Holborn, L.: Das leitvermögen der elektolyte. insbesondere der lösungen. methoden, resultate und chemische anwendungen. Druck und Verlag von B.G. Teubner, Leipzig, (1889)

  42. Jones, H.C.: The electrical conductivity, dissociation and temperature coefficient of conductivity (from zero to sixty-five degrees) of aqueous solutions of a number of salts and organic acids. Carnegie Institution of Washington, Publ. № 170, 48–49 (1912)

  43. Noyes, A.A., Falk, K.G.: The properties of salt solutions in relation to the ionic theory. III Electrical conductance. J. Am. Chem. Soc. 34, 454–485 (1912)

    Article  CAS  Google Scholar 

  44. Fedotov, N.V.: Conductivity of dilute aqueous solutions of cadmium salts in the 25–80° temperature range. Zhurn. Prikl. Khim. 51, 2091–2093 (1978)

    CAS  Google Scholar 

  45. Apelblat, A., Esteso, M.A., Bester-Rogac, M.: A conductivity study of unsymmetrical 2:1 type “complex ion” electrolyte: cadmium chloride in dilute aqueous solutions. J. Phys. Chem. B 117, 5241–5248 (2013)

    Article  CAS  Google Scholar 

  46. Kümmell, G.: Die Ueberführungszahlen von Zn—und Cd—Salzen sehr verdünnten Lösungen. Ann. Physik (Leipzig) N. F. 64, 655–679 (1898)

  47. Wolten, G.M., King, C.V.: Transference numbers of zinc and cadmium sulfates at 25°, as functions of the concentration. J. Am. Chem. Soc. 71, 576–578 (1949)

    Article  CAS  Google Scholar 

  48. Lang, R.E., King, C.V.: Transference numbers in aqueous zinc and cadmium sulfates. J. Am. Chem. Soc. 76, 4716–4718 (1954)

    Article  CAS  Google Scholar 

  49. Apelblat, A., Azoulay, D., Sahar, A.: Properties of aqueous thorium nitrate solutions I. Densities, viscosities, conductivities, pH, solubility and activity at freezing point. J. Chem. Soc., Faraday Trans. 69, 1618–1623 (1973)

    Article  CAS  Google Scholar 

  50. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  51. Apelblat, A., Neueder, R., Barthel, J.: Electrolyte Data Collection. Electrolyte Conductivities and Dissociation Constants of Aqueous Solutions of Organic Monobasic Acids CH2O2–C7H14O3. Chemistry Data Series XII, part 4a, Dechema, Frankfurt am Main (2004)

  52. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liquids 95, 99–145 (2002)

    Article  CAS  Google Scholar 

  53. Brummer, S.B., Hills, G.J.: Kinetics of ionic conductance. Part 1.—Energies of activation and the constant volume principle. Trans. Faraday Soc. 57, 1816–1822 (1961)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author appreciate very much Paulina Veinner for her competent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Appendix: Chemical Equilibria and Conductance Equations in Cases of Formation of Neutral Species and Hydrolysis

Appendix: Chemical Equilibria and Conductance Equations in Cases of Formation of Neutral Species and Hydrolysis

An extension of molecular model to formation in solution of the neutral MeX2 species is governed by the following chemical reactions:

$$ \begin{aligned} {\text{MeX}}_{ 2} \to {\text{Me}}^{{ 2 { + }}} + 2 {\text{X}}^{ - } \hfill \\ {\text{Me}}^{{ 2 { + }}} + {\text{X}}^{ - } \mathop \rightleftharpoons \limits^{{K_{ 1} }} {\text{MeX}}^{ + } \hfill \\ {\text{MeX}}^{ + } + {\text{X}}^{ - } \mathop \rightleftharpoons \limits^{{K_{ 2} }} {\text{MeX}}_{ 2} \hfill \\ \end{aligned} $$
(16)

and in terms of the mass-action equations:

$$ \begin{aligned} K_{ 1} = \frac{{\left[ {{\text{MeX}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{X}}^{ - } } \right]}}\frac{{f_{{{\text{MeX}}^{ + } }} }}{{f_{{{\text{Me}}^{{ 2 { + }}} }} f_{{{\text{X}}^{ - } }} }} = \frac{{\left[ {{\text{MeX}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{X}}^{ - } } \right]}}F_{1} (c) \hfill \\ K_{ 2} = \frac{{\left[ {{\text{MeX}}_{ 2} } \right]}}{{\left[ {{\text{MeX}}^{ + } } \right]\left[ {{\text{X}}^{ - } } \right]}}\frac{{f_{{{\text{MeX}}_{ 2} }} }}{{f_{{{\text{MeX}}^{ + } }} f_{{{\text{X}}^{ - } }} }} = \frac{{\left[ {{\text{MeX}}_{ 2} } \right]}}{{\left[ {{\text{MeX}}^{ + } } \right]\left[ {{\text{X}}^{ - } } \right]}}F_{2} (c). \hfill \\ \end{aligned} $$
(17)

Denoting the fractions of Me2+ and MeX+ ions in solution as α and β, respectively, from the charge and material balance we have:

$$ \begin{aligned} \left[ {{\text{Me}}^{{ 2 { + }}} } \right] = c\alpha \hfill \\ \left[ {{\text{MeX}}^{ + } } \right] = c\beta \hfill \\ \left[ {{\text{X}}^{ - } } \right] = c(2\alpha + \beta ) \hfill \\ \left[ {{\text{MeX}}_{ 2} } \right] = c(1 - \alpha - \beta ) \hfill \\ I = c(3\alpha + \beta ). \hfill \\ \end{aligned} $$
(18)

Introducing Eq. 18 into Eq. 17, the chemical equilibrium equations take the form

$$ \begin{aligned} K_{ 1} = \frac{\beta }{{c{\kern 1pt} \alpha (2\alpha + \beta )}}F_{1} (c) \hfill \\ K_{2} = \frac{(1 - \alpha - \beta )}{{c{\kern 1pt} \beta (2\alpha + \beta )}}F_{2} (c). \hfill \\ \end{aligned} $$
(19)

For every concentration c, the fractions α and β can be successively evaluated by an iterative solution of two quadratic equations:

$$ \begin{aligned} \alpha = \frac{{ - \beta {\kern 1pt} Q_{1} (c) + \sqrt {{\kern 1pt} {\kern 1pt} [\beta {\kern 1pt} Q_{1} (c)]^{2} + 8\beta {\kern 1pt} Q_{1} (c)} }}{{4{\kern 1pt} {\kern 1pt} Q_{1} (c)}} \hfill \\ \beta = \frac{{ - {\kern 1pt} {\kern 1pt} [1 + 2\alpha {\kern 1pt} Q_{2} (c)] + \sqrt {{\kern 1pt} {\kern 1pt} [1 + 2\alpha {\kern 1pt} Q_{2} (c)]^{2} + 4(1 - \alpha )Q_{2} (c)} }}{{2Q_{2} (c)}} \hfill \\ \end{aligned} $$
(20)

where

$$ \begin{aligned} Q_{1} (c) = \frac{{K_{1} c}}{{F_{1} (c)}} \hfill \\ Q_{2} (c) = \frac{{K_{2} c}}{{F_{2} (c)}}. \hfill \\ \end{aligned} $$
(21)

Molar conductance of electrolyte Λ(c, T) in this case from Eq. 1 is:

$$ \varLambda (c,T) = 2\alpha {\kern 1pt} {\kern 1pt} \lambda_{{{\text{Me}}^{{ 2 { + }}} }} (c,T) + \beta {\kern 1pt} {\kern 1pt} \lambda_{{{\text{MeX}}^{ + } }} (c,T) + (2\alpha + \beta ){\kern 1pt} {\kern 1pt} \lambda_{{{\text{X}}^{ - } }} (c,T) $$
(22)

and in terms of the ion pairs (Me2+ + X) and (MeX+ + X) is:

$$ \begin{aligned} \varLambda (c,T) = 2\alpha {\kern 1pt} \varLambda_{1} (c,T) + \beta {\kern 1pt} \varLambda_{2} (c,T) \hfill \\ \varLambda_{1} (c,T) = {\kern 1pt} {\kern 1pt} \left[ {\lambda_{{{\text{Me}}^{{ 2 { + }}} }} (c,T) + \lambda_{{{\text{X}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{2} (c,T) = {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {{\kern 1pt} \lambda_{{{\text{MeX}}^{ + } }} (c,T) + {\kern 1pt} {\kern 1pt} \lambda_{{{\text{X}}^{ - } }} (c,T)} \right]. \hfill \\ \end{aligned} $$
(23)

Thus, essentially the form of conductivity equations remains the same as in Eq. 11, but the appearance of neutral MeX2 species reduces the total number of ions in solution.

In the simplest case of hydrolysis process, the following reactions occur:

$$ \begin{aligned} {\text{MeX}}_{ 2} \to {\text{Me}}^{{ 2 { + }}} + 2 {\text{X}}^{ - } \hfill \\ {\text{Me}}^{{ 2 { + }}} + {\text{X}}^{ - } \mathop \rightleftharpoons \limits^{K} {\text{MeX}}^{ + } \hfill \\ {\text{Me}}^{{ 2 { + }}} + {\text{OH}}^{ - } \mathop \rightleftharpoons \limits^{{K_{\text{h}} }} {\text{MeOH}}^{ + } \hfill \\ {\text{H}}_{ 2} {\text{O}}\mathop \rightleftharpoons \limits^{{K_{\text{w}} }} {\text{H}}^{ + } + {\text{OH}}^{ - } . \hfill \\ \end{aligned} $$
(24)

The mass-action equations of the complexation and hydrolysis processes are:

$$ \begin{aligned} K = \frac{{\left[ {{\text{MeX}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{X}}^{ - } } \right]}}\frac{{f_{{{\text{MeX}}^{ + } }} }}{{f_{{{\text{Me}}^{{ 2 { + }}} }} f_{{{\text{X}}^{ - } }} }} = \frac{{\left[ {{\text{MeX}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{X}}^{ - } } \right]}}F(c) \hfill \\ K_{\text{h}} = \frac{{\left[ {{\text{MeOH}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{OH}}^{ - } } \right]}}\frac{{f_{{{\text{MeOH}}^{ + } }} }}{{f_{{{\text{Me}}^{{ 2 { + }}} }} f_{{{\text{OH}}^{ - } }} }} = \frac{{\left[ {{\text{MeOH}}^{ + } } \right]}}{{\left[ {{\text{Me}}^{{ 2 { + }}} } \right]\left[ {{\text{OH}}^{ - } } \right]}}F_{\text{h}} (c) \hfill \\ K_{\text{w}} = \left[ {{\text{H}}^{ + } } \right]\left[ {{\text{OH}}^{ - } } \right]f_{{{\text{H}}^{ + } }} f_{{{\text{OH}}^{ - } }} = \left[ {{\text{H}}^{ + } } \right]\left[ {{\text{OH}}^{ - } } \right]F_{\text{w}} (c). \hfill \\ \end{aligned} $$
(25)

In this case, from the material and charge balance we have:

$$ \begin{aligned} \left[ {{\text{Me}}^{{ 2 { + }}} } \right] = c\alpha \hfill \\ \left[ {{\text{MeX}}^{ + } } \right] = c\beta \hfill \\ \left[ {{\text{MeOH}}^{ + } } \right] = c(1 - \alpha - \beta ) \hfill \\ \left[ {{\text{X}}^{ - } } \right] = c(2 - \beta ) \hfill \\ \left[ {{\text{OH}}^{ - } } \right] = c\gamma \hfill \\ \left[ {{\text{H}}^{ + } } \right] = c(1 - \alpha - \beta + \gamma ) \hfill \\ I = c(2 + \alpha - \beta + \gamma ) \hfill \\ \end{aligned} $$
(26)

and therefore

$$ \begin{aligned} K = \frac{\beta }{{c{\kern 1pt} \alpha (2 - \beta )}}F(c) \hfill \\ K_{\text{h}} = \frac{(1 - \alpha - \beta )}{{c{\kern 1pt} \alpha {\kern 1pt} \gamma }}F_{\text{h}} (c) \hfill \\ K_{\text{w}} = c^{2} (1 - \alpha - \beta + \gamma )\gamma {\kern 1pt} F_{\text{w}} (c). \hfill \\ \end{aligned} $$
(27)

This gives the set of three equations that should be solved by an iterative procedure:

$$ \begin{aligned} \alpha = \frac{1 - \beta }{{1 + \gamma {\kern 1pt} Q_{\text{h}} (c)}} \hfill \\ \beta = \frac{{2\alpha {\kern 1pt} Q(c)}}{{1 + \alpha {\kern 1pt} Q(c)}} \hfill \\ \gamma = \frac{{ - (1 - \alpha - \beta ) + \sqrt {(1 - \alpha - \beta )^{2} + 4Q_{\text{w}} (c)} }}{2} \hfill \\ \end{aligned} $$
(28)

where

$$ \begin{aligned} Q(c) = \frac{Kc}{F(c)} \hfill \\ Q_{\text{h}} (c) = \frac{{K_{\text{h}} c}}{{F_{\text{h}} (c)}} \hfill \\ Q_{\text{w}} (c) = \frac{{K_{\text{w}} c^{2} }}{{F_{\text{w}} (c)}}. \hfill \\ \end{aligned} $$
(29)

The ionic contributions to the molar conductance Λ(c, T) are given by:

$$ \begin{aligned} \varLambda (c,T) = 2\alpha {\kern 1pt} {\kern 1pt} \lambda_{{{\text{Me}}^{{ 2 { + }}} }} (c,T) + \beta {\kern 1pt} {\kern 1pt} \lambda_{{{\text{MeX}}^{ + } }} (c,T) + (1 - \alpha - \beta )\lambda_{{{\text{MeOH}}^{ + } }} (c,T) \hfill \\ \quad \quad \quad \quad + (2 - \beta ){\kern 1pt} {\kern 1pt} \lambda_{{{\text{X}}^{ - } }} (c,T) + (1 - \alpha - \beta + \lambda )\lambda_{{{\text{H}}^{ + } }} (c,T) + \gamma {\kern 1pt} \lambda_{{{\text{OH}}^{ - } }} (c,T). \hfill \\ \end{aligned} $$
(30)

In order to apply the Quint–Viallard conductance equation, the following conductances of six pairs of ions should be introduced:

$$ \begin{aligned} \varLambda_{1} (c,T) = {\kern 1pt} {\kern 1pt} \left[ {\lambda_{{{\text{Me}}^{{ 2 { + }}} }} (c,T) + \lambda_{{{\text{X}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{2} (c,T) = {\kern 1pt} {\kern 1pt} \left[ {\lambda_{{{\text{Me}}^{{ 2 { + }}} }} (c,T) + \lambda_{{{\text{OH}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{3} (c,T) = {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {{\kern 1pt} \lambda_{{{\text{MeX}}^{ + } }} (c,T) + {\kern 1pt} {\kern 1pt} \lambda_{{{\text{X}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{4} (c,T) = {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {{\kern 1pt} \lambda_{{{\text{MeX}}^{ + } }} (c,T) + {\kern 1pt} {\kern 1pt} \lambda_{{{\text{OH}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{5} (c,T) = {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {{\kern 1pt} \lambda_{{{\text{H}}^{ + } }} (c,T) + {\kern 1pt} {\kern 1pt} \lambda_{{{\text{OH}}^{ - } }} (c,T)} \right] \hfill \\ \varLambda_{6} (c,T) = {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {{\kern 1pt} \lambda_{{{\text{H}}^{ + } }} (c,T) + {\kern 1pt} {\kern 1pt} \lambda_{{{\text{X}}^{ - } }} (c,T)} \right]. \hfill \\ \end{aligned} $$
(31)

Arranging (31) with using (30), the molar conductance of solutions is given by:

$$ \begin{aligned} \varLambda (c,T) = \alpha {\kern 1pt} \varLambda_{1} (c,T) + \alpha {\kern 1pt} \varLambda_{2} (c,T) + \beta {\kern 1pt} {\kern 1pt} \varLambda_{3} (c,T) + (1 - \alpha - \beta ){\kern 1pt} {\kern 1pt} \varLambda_{4} (c,T) \hfill \\ \quad \quad \quad \quad +( - 1 + \beta + \gamma ){\kern 1pt} {\kern 1pt} \varLambda_{5} (c,T) + (2 - \alpha - 2\beta ){\kern 1pt} {\kern 1pt} \varLambda_{6} (c,T). \hfill \\ \end{aligned} $$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apelblat, A. Representation of Electrical Conductances by the Quint–Viallard Conductivity Equation. Part 6. Unsymmetrical 2:1 Type “Complex Ions” Electrolytes: Cadmium Bromide and Cadmium Iodide. J Solution Chem 45, 1130–1145 (2016). https://doi.org/10.1007/s10953-016-0493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0493-7

Keywords

Navigation