Skip to main content
Log in

Depth Resolved Magnetic Studies of Fe/57Fe/C60 Bilayer Structure Under X-Ray Standing Wave Condition

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Organic spintronics has emerged as a promising field for exploring novel spin-based phenomena and devices, offering the potential for low-power, flexible, and biocompatible electronics. The interface between metallic ferromagnetic and semiconducting organic layers plays a pivotal role in spin injection, transport, and extraction processes in these devices. Therefore, achieving a comprehensive understanding of the magnetic properties at these interfaces is essential for advancing device performance and functionality. This work explores the magnetic properties at the interface between thin Fe film and the C60 layer. We employ a multi-technique approach, combining the magneto-optic Kerr effect, which provides a global assessment of magnetic properties, and depth-resolved grazing incidence nuclear resonance scattering (GINRS) under X-ray standing wave conditions, enabling us to probe magnetism with high spatial resolution within the interfacial region. GINRS measurements reveal intriguing behavior at the interface, characterized by reduced hyperfine fields in diffused 57Fe layers. This observation suggests the formation of superparamagnetic clusters, which significantly influence the magnetic properties at the interface. These findings provide valuable insights into the complex interplay between ferromagnetic materials and organic semiconductors at the nanoscale, offering potential avenues for tailoring magnetoresistance effects in organic spintronic devices and contributing to the fundamental understanding of spin-dependent phenomena in organic spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hirohata, A., Takanashi, K.: Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47(19), 193001 (2014). https://doi.org/10.1088/0022-3727/47/19/193001

    Article  ADS  Google Scholar 

  2. Hirohata, A., et al.: Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  Google Scholar 

  3. Datta, D., Kumar, S.: Growth and ellipsometric studies on C60 thin films for solar cell applications. J. Appl. Phys. 106(7), 074517 (2009). https://doi.org/10.1063/1.3239853

    Article  ADS  Google Scholar 

  4. Pathak, D., et al.: New tailored organic semiconductors thin films for optoelectronic applications. Eur. Phys. J. Appl. Phys. 95(1), (2021).https://doi.org/10.1051/epjap/2021210090

  5. Reineke, S., Thomschke, M., Lüssem, B., Leo, K.: White organic light-emitting diodes: status and perspective. Rev. Mod. Phys. 85(3), 1245–1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245

    Article  ADS  Google Scholar 

  6. Sanvito, S.: The rise of spinterface science. Nature Phys. 6(8), (2010). https://doi.org/10.1038/nphys1714

  7. Nguyen, T.D., Wang, F., Li, X.-G., Ehrenfreund, E., Vardeny, Z.V.: Spin diffusion in fullerene-based devices: morphology effect. Phys. Rev. B 87(7), 075205 (2013). https://doi.org/10.1103/PhysRevB.87.075205

    Article  ADS  Google Scholar 

  8. Zhang, X., et al.: Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat Commun. 4(1),(2013). https://doi.org/10.1038/ncomms2423

  9. Dediu, V.A., Hueso, LE., Bergenti, I., Taliani, C.: Spin routes in organic semiconductors. Nature Mater. 8(9), (2009). https://doi.org/10.1038/nmat2510

  10. Sun, D.-L., Ehrenfreund, E.: The first decade of organic spintronics research. Chemical communications (Cambridge, England). 50, (2014). https://doi.org/10.1039/c3cc47126h

  11. Li, D., Yu, G.: Innovation of materials, devices, and functionalized interfaces in organic spintronics. Adv. Func. Mater. 31(28), 2100550 (2021). https://doi.org/10.1002/adfm.202100550

    Article  Google Scholar 

  12. Steil, S., et al.: Spin-dependent trapping of electrons at spinterfaces. Nature Phys. 9(4), (2013). https://doi.org/10.1038/nphys2548

  13. Moorsom, T., et al.: Reversible spin storage in metal oxide—fullerene heterojunctions. Science Advance. 6(12), eaax1085 (2020). https://doi.org/10.1126/sciadv.aax1085

  14. Droghetti, A., et al.: Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat Commun. 7(1), (2016). https://doi.org/10.1038/ncomms12668

  15. Moorsom, T., et al.: Spin-polarized electron transfer in ferromagnet/C60 interfaces. Phys. Rev. B 90(12), 125311 (2014). https://doi.org/10.1103/PhysRevB.90.125311

    Article  ADS  Google Scholar 

  16. Bairagi, K., et al.: Experimental and theoretical investigations of magnetic anisotropy and magnetic hardening at molecule/ferromagnet interfaces. Phys. Rev. B 98(8), 085432 (2018). https://doi.org/10.1103/PhysRevB.98.085432

    Article  ADS  Google Scholar 

  17. Bairagi, K., et al.: Tuning the magnetic anisotropy at a molecule-metal interface. Phys. Rev. Lett. 114(24), 247203 (2015). https://doi.org/10.1103/PhysRevLett.114.247203

    Article  ADS  Google Scholar 

  18. Mallik, S., Sharangi, P., Sahoo, B., Mattauch, S., Brückel, T., Bedanta, S.: Enhanced anisotropy and study of magnetization reversal in Co / C 60 bilayer thin film. Appl. Phys. Lett. 115(24), 242405 (2019). https://doi.org/10.1063/1.5096879

    Article  ADS  Google Scholar 

  19. Sharangi, P., et al.: Effect of fullerene on anisotropy, domain size and relaxation in a perpendicularly magnetized Pt/Co/C 60 /Pt system. Journal of Materials Chemistry C (2022). https://doi.org/10.1039/D2TC01347A

    Article  Google Scholar 

  20. Mallik, S., Mattauch, S., Dalai, M. K., Brückel, T., Bedanta, S.: Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface. Sci Rep. 8(1), (2018). https://doi.org/10.1038/s41598-018-23864-8

  21. Mondal, K.P., et al.: Effect of growth rate on quality of Alq3 films and Co diffusion. J. Phys. D Appl. Phys. 54(15), 155304 (2021). https://doi.org/10.1088/1361-6463/abd9eb

    Article  ADS  Google Scholar 

  22. Kaushik, S., et al.: Study of obliquely deposited 57Fe layer on organic semiconductor (Alq3); interface resolved magnetism under x-ray standing wave. Hyperfine Interact. 242(1), 24 (2021). https://doi.org/10.1007/s10751-021-01756-0

    Article  ADS  Google Scholar 

  23. Khanderao, A.G., et al.: Interface magnetism in Fe/Alq3 bilayer; interface resolved nuclear resonance scattering studies. J. Magn. Magn. Mater. 560, 169663 (2022). https://doi.org/10.1016/j.jmmm.2022.169663

    Article  Google Scholar 

  24. Chan, Y.-L., et al.: Magnetic response of an ultrathin cobalt film in contact with an organic pentacene layer. Phys. Rev. Lett. 104(17), 177204 (2010). https://doi.org/10.1103/PhysRevLett.104.177204

    Article  ADS  Google Scholar 

  25. Chen, B. B., Zhou, Y., Wang, S., Shi, Y. J., Ding, H. F., Wu,  D.: Giant magnetoresistance enhancement at room-temperature in organic spin valves based on La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 103(7), 072402 (2013). https://doi.org/10.1063/1.4818614

  26. Dediu, V., et al.: Room-temperature spintronic effects in Alq3-based hybrid devices. Phys. Rev. B 78(11), 115203 (2008). https://doi.org/10.1103/PhysRevB.78.115203

    Article  ADS  Google Scholar 

  27. Xiong, Z. H., Wu, D., Valy Vardeny, Z., Shi, J.: Giant magnetoresistance in organic spin-valves. Nature. 427(6977), (2004)

  28. Gobbi, M., Golmar, F., Llopis, R., Casanova, F., Hueso, L.E.: Room-temperature spin transport in C60-based spin valves. Adv. Mater. 23(14), 1609–1613 (2011). https://doi.org/10.1002/adma.201004672

    Article  Google Scholar 

  29. Barraud, C., et al.: Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6(8), (2010). https://doi.org/10.1038/nphys1688

  30. Hsu, C.-C., Hsu, K.-L., Chang, P.-C., Liu, S.-Y., Hsu, C.-C., Lin, W.-C.: Organic/metal interface–modulated magnetism in [Fe/C60]3 multilayers and Fe-C60 composites. Nanotechnology 31(32), 325701 (2020)

    Article  ADS  Google Scholar 

  31. Tsoy, G., Janu, Z., Novak, M., Soukup, F., Tichy, R.: High-resolution SQUID magnetometer. Physica B 284–288, 2122–2123 (2000). https://doi.org/10.1016/S0921-4526(99)03023-9

    Article  ADS  Google Scholar 

  32. Kaushik, S., Khanderao, A. G., Gupta, P., Raghavendra Reddy, V., Kumar, D.: Growth of ultra-thin cobalt on fullerene (C60) thin-film: in-situ investigation under UHV conditions. Mater. Sci. Eng. B. 284, 115911 (2022). https://doi.org/10.1016/j.mseb.2022.115911

  33. Kumar, D., et al.: Interface induced perpendicular magnetic anisotropy in a Co/CoO/Co thin-film structure: an in situ MOKE investigation. J. Phys. D Appl. Phys. 47(10), 105002 (2014). https://doi.org/10.1088/0022-3727/47/10/105002

    Article  ADS  Google Scholar 

  34. Won, S., Saun, S.-B., Lee, S., Lee, S., Kim, K., Han, Y.: NMR spectroscopy for thin films by magnetic resonance force microscopy. Sci Rep. 3(1), (2013). https://doi.org/10.1038/srep03189

  35. Raj, R., Kuila, M., Gupta, M., Reddy,  V.: 57Fe Mössbauer and magneto-optical Kerr effect (MOKE) study of transcritical state in permalloy (FexNi100-x) thin films. Hyperfine Interactions. 242, (2021). https://doi.org/10.1007/s10751-021-01753-3

  36. Perry, L.K., Ryan, D.H., Gagnon, R.: Studying surfaces and thin films using Mössbauer spectroscopy. Hyperfine Interact. 170(1), 131–143 (2006). https://doi.org/10.1007/s10751-006-9463-6

    Article  ADS  Google Scholar 

  37. Gellert, R., et al.: Depth selective CEMS in the energy range 0 to 20 keV. Nucl. Instrum. Methods Phys. Res., Sect. B 76(1), 381–382 (1993). https://doi.org/10.1016/0168-583X(93)95246-2

    Article  ADS  Google Scholar 

  38. Couet, S., et al.: The magnetic structure of coupled Fe/FeO multilayers revealed by nuclear resonant and neutron scattering methods. New J. Phys. 11(1), 013038 (2009). https://doi.org/10.1088/1367-2630/11/1/013038

    Article  ADS  Google Scholar 

  39. Stöhr, J., Padmore, H.A., Anders, S., Stammler, T., Scheinfein, M.R.: Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 05(06), 1297–1308 (1998). https://doi.org/10.1142/S0218625X98001638

    Article  ADS  Google Scholar 

  40. Liu, Y., et al.: Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Phys. Rev. B 79(7), 075312 (2009). https://doi.org/10.1103/PhysRevB.79.075312

    Article  ADS  Google Scholar 

  41. Wang, Y.-P., Han, X.-F., Fry, J.N., Krause, J.L., Zhang, X.-G., Cheng, H.-P.: Deposition of cobalt atoms onto Alq3 films: a molecular dynamics study. Phys. Rev. B 90(7), 075311 (2014). https://doi.org/10.1103/PhysRevB.90.075311

    Article  ADS  Google Scholar 

  42. Jamal, M., Gupta, P., Raj, R., Gupta, M., Reddy, V., Kumar, D.: Structural and magnetic asymmetry at the interfaces of MgO/FeCoB/MgO trilayer: precise study under x-ray standing wave conditions. J. Appl. Phys. 131, 235301 (2022). https://doi.org/10.1063/5.0092977

    Article  ADS  Google Scholar 

  43. Khanderao, A.G., Sergueev, I., Wille, H.C., Kumar, D.: Interface resolved magnetism at metal–organic (Fe/Alq3) interfaces under x-ray standing wave condition. Appl. Phys. Lett. 116(10), 101603 (2020). https://doi.org/10.1063/1.5135361

    Article  ADS  Google Scholar 

  44. Andreeva, M., et al.: Evolution of the magnetic hyperfine field profiles in an ion-irradiated Fe60Al40 film measured by nuclear resonant reflectivity. J Synchrotron Rad. 28(5), (2021). https://doi.org/10.1107/S1600577521007694

  45. Schlage, K., Röhlsberger, R.: Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures. J. Electron Spectrosc. Relat. Phenom. 189, 187–195 (2013). https://doi.org/10.1016/j.elspec.2013.02.005

    Article  Google Scholar 

  46. Singh, M., et al.: Depth selective local coordination in CoFeB thin films probed by XAFS and ToF-SIMS. J. Alloy. Compd. 960, 170588 (2023). https://doi.org/10.1016/j.jallcom.2023.170588

    Article  Google Scholar 

  47. Abruna, H. D., Bommarito, G. M., Yee, H. S.: X-ray standing waves and surface EXAFS studies of electrochemical interfaces. CS Publications. Accessed 30 Dec 2023. [Online]. Available: https://pubs.acs.org/doi/pdf/10.1021/ar00054a005

  48. Jamal, Md.S., Gupta, P., Sergeev, I., Leupold, O., Kumar, D.: Interface-resolved study of magnetism in MgO/FeCoB/MgO trilayers using x-ray standing wave techniques. Phys. Rev. B 107(7), 075416 (2023). https://doi.org/10.1103/PhysRevB.107.075416

    Article  ADS  Google Scholar 

  49. Andreeva, M.A.: Nuclear resonant reflectivity data evaluation with the “REFTIM” program. Hyperfine Interact. 185(1–3), 17–21 (2008). https://doi.org/10.1007/s10751-008-9806-6

    Article  ADS  Google Scholar 

  50. Roth, T.A.: The surface and grain boundary energies of iron, cobalt and nickel. Mater. Sci. Eng. 18(2), 183–192 (1975). https://doi.org/10.1016/0025-5416(75)90168-8

    Article  MathSciNet  Google Scholar 

  51. Ma, X., Wigington, B., Bouchard, D.: Fullerene C60: surface energy and interfacial interactions in aqueous systems. Langmuir 26(14), 11886–11893 (2010). https://doi.org/10.1021/la101109h

    Article  Google Scholar 

  52. Kaune, G., et al.: In situ GISAXS study of gold film growth on conducting polymer films. ACS Appl. Mater. Interfaces 1(2), 353–360 (2009). https://doi.org/10.1021/am8000727

    Article  ADS  Google Scholar 

  53. Morkved, T.L., Wiltzius, P., Jaeger, H.M., Grier, D.G., Witten, T.A.: Mesoscopic self-assembly of gold islands on diblock-copolymer films. Appl. Phys. Lett. 64(4), 422–424 (1994). https://doi.org/10.1063/1.111118

    Article  ADS  Google Scholar 

Download references

Funding

Partial financial support from the Department of Science and Technology (Government of India) (Project-CRG/2021/003094) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.K.: Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Validation (lead); Writing – original draft (lead); Writing – review & editing (lead). R.R.: Data curation (supporting); Writing – review & editing (equal). I.S.: Data curation (supporting); Resources P.G.: Resources V.R.R. : Resources D.K.: Conceptualization; Resources; Validation (equal); Writing – review & editing (equal).

Corresponding author

Correspondence to Dileep Kumar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S., Raj, R., Sergeev, I. et al. Depth Resolved Magnetic Studies of Fe/57Fe/C60 Bilayer Structure Under X-Ray Standing Wave Condition. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06738-1

Keywords

Navigation