Skip to main content
Log in

Structure and Magnetism in Multilayer Fe/MgO/Cr/MgO/Fe Nanosystems

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Layered Fe/MgO/Cr/MgO/Fe nanostructures are an artificial ferromagnetic material, in which the exchange interaction of the magnetic moments of the Fe layers through intermediate dielectric and metal layers can lead to magnetic configurations that are not implemented in well-studied Fe/MgO/Fe and Fe/Cr/Fe systems. The correlation between the structural and magnetic properties of layered nanoheterostructures Fe(10 nm)/MgO(1.5 nm)/Cr(t)/MgO(1.5 nm)/Fe(7 nm) (t = 0.9, 1.8 nm) is studied. The data of X-ray diffractometry and high-resolution reflectometry confirm the formation of an epitaxial crystal structure and reveal its layered nature with sharp interlayer boundaries. Vibration magnetometry does not reveal substantial differences in the hysteresis loops, which have a characteristic stepped shape. Polarized neutron reflectometry makes it possible to establish that the processes of magnetization reversal in these samples occur in different ways at the level of individual Fe layers. In the sample with Cr interlayers with a thickness of 0.9 nm, the Fe layers are exchange coupled through the MgO/Cr/MgO interlayer, and their rotation is correlated upon applying a magnetic field. There is no exchange interaction between the Fe layers in the sample with a Cr interlayer with a thickness of 1.8 nm, and they undergo magnetization reversal independent of each other. It is found that the magnetization reversal of the Fe/MgO/Cr/MgO/Fe systems is characterized by an intermediate state that can be controlled using a small external field with an intensity of several tens of oersted and a change in the orientation of the sample as well as by varying the thickness of the MgO layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Ennen, D. Kappe, T. Rempel, et al., Sensors 16, 904 (2016). https://doi.org/10.3390/s16060904

    Article  CAS  Google Scholar 

  2. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472

    Article  CAS  Google Scholar 

  3. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B: Condens. Matter Mater. Phys. 39, 4828 (1989). https://doi.org/10.1103/Phys.RevB.39.4828

    Article  CAS  Google Scholar 

  4. E. M. Yakunina, V. I. Bodnarchuk, V. V. Proglyado, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 987 (2014). https://doi.org/10.1134/S1027451014050437

    Article  CAS  Google Scholar 

  5. D. Halley, H. Majjad, M. Bowen, et al., Appl. Phys. Lett. 92, 212115 (2008). https://doi.org/10.1063/1.29386966

    Article  Google Scholar 

  6. S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nat. Mater. 3, 862 (2004). https://doi.org/10.1038/nmat1256

    Article  CAS  Google Scholar 

  7. A. Kozioł-Rachwał, T. Nozaki, V. Zayets, et al., J. Appl. Phys. 120, 085303 (2016). https://doi.org/10.1063/1.4961203

    Article  CAS  Google Scholar 

  8. S. Yuasa, T. Nagahama, A. Fukushima, et al., Nat. Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257

    Article  CAS  Google Scholar 

  9. S. Yuasa and D. D. Djayaprawira, J. Phys. D: Appl. Phys. 40, 337 (2000). https://doi.org/10.1088/0022-3727/40/21/R01

    Article  CAS  Google Scholar 

  10. J. Hayakawa, M. Lee, S. Ikeda, et al., Appl. Phys. Lett. 89, 232510 (2006). https://doi.org/10.1063/1.2402904

    Article  CAS  Google Scholar 

  11. A. Rühm, B. Toperverg, and H. Dosch, Phys. Rev. B: Condens. Matter Mater. Phys. 60, 16073 (1999). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.60.16073

    Article  Google Scholar 

  12. E. Młyńczak, K. Freindl, N. Spiridis, et al., J. Appl. Phys. 113, 024320 (2013). https://doi.org/10.1063/1.4775707

    Article  CAS  Google Scholar 

  13. X. Jia, K. Xia, and G. E. W. Bauer, Phys. Rev. Lett. 107, 176603 (2011). https://doi.org/10.1103/PhysRevLett.107.176603

    Article  CAS  Google Scholar 

  14. E. Jai, J. B. Kortright, T. Chase, et al., Appl. Phys. Lett. 107, 092404 (2015). https://doi.org/10.1063/1.4929990

    Article  CAS  Google Scholar 

  15. D. Seifu, in Nanowires: Synthesis, Properties and Applications (IntechOpen, 2018). https://doi.org/10.5772/intechopen.79819

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Yakunina or E. A. Kravtsov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakunina, E.M., Kravtsov, E.A., Khaydukov, Y.N. et al. Structure and Magnetism in Multilayer Fe/MgO/Cr/MgO/Fe Nanosystems. J. Surf. Investig. 15, 793–798 (2021). https://doi.org/10.1134/S1027451021040406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040406

Keywords:

Navigation