Skip to main content
Log in

The Binary Ion Substitution Bi1−xSrxFe1−yCoyO3 for Boosting Multiferroic Performance

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ion doping is the effective strategy for enhancing the multiferroic performance of BiFeO3 (BFO) ceramics. In this work, the preparation of Bi1−xSrxFe1−yCoyO3 (0 ≤ x ≤ 0.05, 0 ≤ y ≤ 0.05) powders was successfully carried out by self-propagating combustion technology. The Sr, Co as the dopants exhibited significant effect on the microstructure and multiferroic performance of BFO ceramic. The substitution of Sr, Co ions for A and B sites suppressed the grain growth and reduced the leakage current. The leakage current of BSFO was two orders of magnitude smaller than pure BFO. The large 2Pr (4.470 μC/cm2), Ec (24.36 kV/cm), and Ms (5.330 emu/g) for Bi1−xSrxFe1−yCoyO3 samples were obtained, revealing superior multiferroic and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Spaldin, N.A., Ramesh, R.: Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  2. Bibes, M., Barthélémy, A.: Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  ADS  Google Scholar 

  3. Lisnevskaya, I.V., Myagkaya, K.V., Butova, V.V., Shapovalov, V.V., Rusalev, Y.V., Zahran, H.Y., Yahia, I.S., Soldatov, A.V.: Preferences of the end members of the lanthanide series for A and B sites in BiFeO3. Ceram. Int. 46, 6333–6341 (2020)

    Article  Google Scholar 

  4. Chauhan, S., Kumar, M., Yousuf, A., Rathi, P., Sahni, M., Singh, S.: Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Mater. Chem. Phys. 263, 124402 (2021)

    Article  Google Scholar 

  5. Li, J., Yan, D.Z.: Low-temperature synthesis of pure BiFeO3 phase and variation in its morphology with temperature. Ceram. Int. 44, 18271–18278 (2018)

    Article  Google Scholar 

  6. Rong, Q.Y., Xiao, W.Z., Cheng, C.P., Wang, L.L.: Magnetism and ferroelectricity in BiFeO3 doped with Ga at Fe sites. J. Alloy. Compd. 797, 117–121 (2019)

    Article  Google Scholar 

  7. Das, S., Rana, S., Mursalin, S.M., Rana, P., Sen, A.: Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor. Sens. Actuators B Chem. 218, 122–127 (2015)

    Article  Google Scholar 

  8. Scott, J.F.: Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012)

    Article  Google Scholar 

  9. Chowdhury, S.S., Kamal, A.H.M., Hossain, R., Hasan, M., Islam, M.F., Ahmmad, B., Basith, M.A.: Dy doped BiFeO3: a bulk ceramic with improved multiferroic properties compared to nano counterparts. Ceram. Int. 43, 9191–9199 (2017)

    Article  Google Scholar 

  10. Bai, X., Bugnet, M., Frontera, C., Gemeiner, P., Guillot, J., Lenoble, D., Infante, I.C.: Crystal growth mechanisms of BiFeO3 nanoparticles. Inorg. Chem. 58, 11364–11371 (2019)

    Article  Google Scholar 

  11. Suresh, P., Srinath, S.: Effect of synthesis route on the multiferroic properties of BiFeO3: a comparative study between solid state and sol–gel methods. J. Alloy. Compd. 649, 843–850 (2015)

    Article  Google Scholar 

  12. Castro, A., Martins, M.A., Ferreira, L.P., Godinho, M., Vilarinho, P.M., Ferreira, P.: Multifunctional nanopatterned porous bismuth ferrite thin films. J. Mater. Chem. C 7, 7788–7797 (2019)

    Article  Google Scholar 

  13. Castillo, M.E., Shvartsman, V.V., Gobeljic, D., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders. Nanotechnology 24, 355701 (2013)

    Article  Google Scholar 

  14. Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  15. Sando, D., Barthélémy, A., Bibes, M.: BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014)

    Article  ADS  Google Scholar 

  16. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  17. Wang, Y., Nan, C.W.: Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89, 052903 (2006)

    Article  ADS  Google Scholar 

  18. Wen, Z., Hu, G., Fan, S., Yang, C., Wu, W., Zhou, Y., Chen, X., Cui, S.: Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517, 4497–4501 (2009)

    Article  ADS  Google Scholar 

  19. Kumar, A., Singh, P., Choudhary, R.J., Pandey, D.: Effect of Mn-doping on the low temperature magnetic phase transitions of BiFeO3. J. Alloy. Compd. 825, 154148 (2020)

    Article  Google Scholar 

  20. Karpinsky, D.V., Troyanchuk, I.O., Bushinsky, M.V., Gavrilov, S.A., Silibin, M.V., Franz, A.: Crystal structure and magnetic properties of Bi1−xCaxFe1−xMn(Ti)xO3 ceramics across the phase boundary. J. Mater. Sci. 51, 10506–10514 (2016)

    Article  ADS  Google Scholar 

  21. Lin, F., Yu, Q., Deng, L., Zhang, Z., He, X., Liu, A., Shi, W.: Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics. J. Mater. Sci. 52, 7118–7129 (2017)

    Article  ADS  Google Scholar 

  22. Yang, R., Sun, H., Li, J., Li, Y.A.: Structural, magnetic and photocatalytic properties of Sr2+ doped BiFeO3 nanofibres fabricated by electrospinning. Ceram. Int. 44, 14032–14035 (2018)

  23. Zhang, Q., Zhu, X., Xu, Y., Gao, H., Xiao, Y., Liang, D., Zhu, J., Zhu, J., Xiao, D.: Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics. J. Alloy. Compd. 546, 57–62 (2013)

    Article  Google Scholar 

  24. Yuan, X., Shi, L., Zhao, J., Zhou, S., Li, Y., Xie, C., Guo, J.: Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds. J. Alloy. Compd. 708, 93–98 (2017)

    Article  Google Scholar 

  25. Khajonrit, J., Wongpratat, U., Kidkhunthod, P., Pinitsoontorn, S., Maensiri, S.: Effects of Co doping on magnetic and electrochemical properties of BiFeO3 nanoparticles. J. Magn. Magn. Mater. 449, 423–434 (2018)

    Article  ADS  Google Scholar 

  26. Wani, W.A., Kundu, S., Ramaswamy, K., Venkataraman, H.: Structural, morphological, optical and dielectric investigations in cobalt doped bismuth ferrite nanoceramics prepared using the sol-gel citrate precursor method. J. Alloy. Compd. 846, 156334 (2020)

    Article  Google Scholar 

  27. Puhan, A., Bhushan, B., Satpathy, S., Meena, S.S., Nayak, A.K., Rout, D.: Facile single phase synthesis of Sr, Co co-doped BiFeO3 nanoparticles for boosting photocatalytic and magnetic properties. Appl. Surf. Sci. 493, 593–604 (2019)

    Article  ADS  Google Scholar 

  28. Hasan, M., Hakim, M.A., Basith, M.A., Hossain, M.S., Ahmmad, B., Zubair, M.A., Hussain, A., Islam, M.F.: Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3. AIP Adv. 6, 035314 (2016)

    Article  ADS  Google Scholar 

  29. Dhir, G., Uniyal, P., Verma, N.K.: Multiferroic properties of Sr-doped BiFeO3 nanoparticles. Physica B 531, 51–57 (2018)

    Article  ADS  Google Scholar 

  30. Srihari N.V., Vinayakumar, K.B., Nagaraja, K.K.: Magnetoelectric coupling in bismuth ferrite—challenges and perspectives. Coatings 10, 1221–1240 (2020)

  31. Zhang, Y., Qi, J., Wang, Y., Tian, Y., Zhang, J., Hu, T., Wei, M., Liu, Y., Yang, J.: Tuning magnetic properties of BiFeO3 thin films by controlling Mn doping concentration. Ceram. Int. 44, 6054–6061 (2018)

    Article  Google Scholar 

  32. Liu, S., Luo, H., Yan, S., Yao, L., He, J., Li, Y., He, L., Huang, S., Deng, L.: Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3. J. Magn. Magn. Mater. 426, 267–272 (2017)

    Article  ADS  Google Scholar 

  33. Mao, W., Chen, W., Wang, X., Zhu, Y., Ma, Y., Xue, H., Chu, L., Yang, J., Li, X.A., Huang, W.: Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceram. Int. 42,12838–12842 (2016)

  34. Kar, B.S., Goswami, M.N., Jana, P.C.: Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3–BaTiO3 ceramics. J. Alloy. Compd. 861, 157960 (2021)

    Article  Google Scholar 

  35. Samantray, N.P., Choudhary, R.N.P.: Studies of structural, dielectric and impedance spectroscopy of Ca/Zr modified BiFeO3 ceramics. Mater. Chem. Phys. 260, 124115 (2021)

    Article  Google Scholar 

  36. Anwar, A., Yousuf, M.A., Zulfiqar, S., Agboola, P.O., Shakir, I., Al-Khalli, N.F., Warsi, M.F.: The impact of highly paramagnetic Gd3+ cations on structural, spectral, magnetic and dielectric properties of spinel nickel ferrite nanoparticles. J. Saudi Chem. Soc. 25, 101306 (2021)

    Article  Google Scholar 

  37. Ray, A., Basu, T., Behera, B., Kumar, M., Thapa, R., Nayak, P.: Role of Gd-doping in conduction mechanism of BFO-PZO nanocrystalline composites: experimental and first-principles studies. J. Alloy. Compd. 768, 198–213 (2018)

    Article  Google Scholar 

  38. Zhu, W.M., Ye, Z.G.: Effects of chemical modification on the electrical properties of 0.67BiFeO3–0.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435–1442 (2004)

  39. Uniyal, P., Yadav, K.L.: Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)

    Article  Google Scholar 

  40. Jia, D.C., Xu, J.H., Ke, H., Wang, W., Zhou, Y.: Structure and multiferroic properties of BiFeO3 powders. J. Eur. Ceram. Soc. 29, 3099–3103 (2009)

    Article  Google Scholar 

  41. Gowrishankar, M., Babu, D.R., Saravanan, P.: Room temperature multiferroism in La and Ti Co-substituted BiFeO3 nanoparticles. Mater. Lett. 171, 34–37 (2016)

    Article  Google Scholar 

  42. Maleki, H.: Photocatalytic activity, optical and ferroelectric properties of Bi0.8Nd0.2FeO3 nanoparticles synthesized by sol-gel and hydrothermal methods. J. Magn. Magn. Mater. 458, 277–284 (2018)

  43. Turchenko, V., Kostishin, V.G., Trukhanov, S., Damay, F., Balasoiu, M., Bozzo, B., Fina, I., Burkhovetsky, V.V., Polosan, S., Zdorovets, M.V., Kozlovskiy, A.L., Astapovich, K.A., Trukhanov, A.: Structural features, magnetic and ferroelectric properties of SrFe10.8In1.2O19 compound. Mater. Res. Bullet. 138, 111236 (2021)

  44. Phan, T.L., Yu, S.C., Vincent, R., Bui, H.M., Thanh, T.D., Lam, V.D., Lee, Y.P.: Influence of Mn doping on structural, optical, and magnetic properties of Zn1−xMnxO nanorods. J. Appl. Phys. 108, 044910 (2010)

    Article  ADS  Google Scholar 

  45. Basith, M.A., Billah, A., Jalil, M.A., Yesmin, N., Sakib, M.A., Ashik, E.K., Yousuf, S.E.H., Chowdhury, S.S., Hossain, M.S., Firoz, S.H., Ahmmad, B.: The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material. J. Alloy. Compd. 694, 792–799 (2017)

  46. Tomczyk, M., Mahajan, A., Tkach, A., Vilarinho, P.M.: Interface-based reduced coercivity and leakage currents of BiFeO3 thin films: a comparative study. Mater. Des. 160, 1322–1334 (2018)

    Article  Google Scholar 

  47. Makhdoom, A.R., Akhtar, M.J., Rafiq, M.A., Hassan, M.M.: Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38, 3829–3834 (2012)

    Article  Google Scholar 

  48. Wang, T., Song, S.H., Ma, Q., Tan, M.L., Chen, J.J.: Highly improved multiferroic properties of Sm and Nb co-doped BiFeO3 ceramics prepared by spark plasma sintering combined with sol-gel powders. J. Alloy. Compd. 795, 60–68 (2019)

    Article  Google Scholar 

  49. Xu, D., Zhao, W., Cao, W., Li, W., Fei, W.: Electrical properties of Li and Nb modified BiFeO3 ceramics with reduced leakage current. Ceram. Int. 47, 4217–4225 (2021)

    Article  Google Scholar 

  50. Mao, W., Yao, Q., Fan, Y., Wang, Y., Wang, X., Pu, Y., Li, X.A.: Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloy. Compd. 784, 117–124 (2019)

  51. Hu, H., Krupanidhi, S.B.: Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films. J. Mater. Res. 9, 1484–1498 (1994)

    Article  ADS  Google Scholar 

  52. Qian, F.Z., Jiang, J.S., Guo, S.Z., Jiang, D.M., Zhang, W.G.: Multiferroic properties of Bi1−xDyxFeO3 nanoparticles. J. Appl. Phys. 106, 084312 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Meng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Gao, J. & Meng, X. The Binary Ion Substitution Bi1−xSrxFe1−yCoyO3 for Boosting Multiferroic Performance. J Supercond Nov Magn 36, 975–985 (2023). https://doi.org/10.1007/s10948-023-06532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06532-5

Keywords

Navigation