Skip to main content
Log in

Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BiFeO3 (BFO) and Bi1−x La x Fe0.9Cr0.1O3 (x = 0.1–0.2, BLFC x=0.1–0.2) ceramics were prepared by modified solid-state reaction. The influence of La/Cr codoping on the microstructure, leakage, dielectric and magnetic properties of BFO was studied. It is found that the La/Cr codoping can induce a structural transformation from a rhombohedral (R3c) phase to a triclinic (P1) phase, suppress the formation of oxygen vacancies and modulate the spiral spin structure. With the increasing La concentration, the leakage current density can be diminished by over two orders of magnitude compared with undoped BFO, in a reasonable range for device applications. The dielectric loss follows almost the same trend as the leakage current, while the dielectric constant is raised to 400.8 at 100 kHz for x = 0.2, over eight times larger than that of undoped BFO. The substantially enhanced magnetization can be mainly attributed to the suppression of the spiral spin structure and a new ferromagnetic Fe3+–O2−–Cr3+ super-exchange interaction. More interestingly, abrupt changes are observed around x = 0.15, not only in microstructure but also in electrical and magnetic properties, which may indirectly reflect the coupling effect among them. The BLFC x=0.2 ceramic shows the highest magnetization and dielectric constant together with the lowest leakage current and dielectric loss. The results indicate that the La/Cr codoping can effectively improve the magnetic and electrical properties of BFO ceramic for potential applications in magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392

    Article  Google Scholar 

  2. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  Google Scholar 

  3. Selbach SM, Einarsrud MA, Grande T (2009) On the thermodynamic stability of BiFeO3. Chem Mater 21:169–173

    Article  Google Scholar 

  4. Sati PC, Kumar M, Chhoker S (2015) Phase evolution, magnetic, optical, and dielectric properties of Zr-substituted Bi0.9Gd0.1FeO3 multiferroics. J Am Ceram Soc 98:1884–1890

    Article  Google Scholar 

  5. Yuan GL, Or SW, Liu JM, Liu ZG (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−x Nd x FeO3 multiferroic ceramics. Appl Phys Lett 89:052905

    Article  Google Scholar 

  6. Lin YH, Jiang QH, Wang Y, Nan CW, Chen L, Yu J (2007) Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl Phys Lett 90:172507

    Article  Google Scholar 

  7. Zhu J, Pavan Kumar N, Min Z, Hu YM, Venugopal Reddy P (2015) Structural, magnetic and dielectric properties of Bi1−x La x FeO3 (x = 0, 0.1, 0.15 and 0.2). J Magn Magn Mater 386:92–97

    Article  Google Scholar 

  8. Lan CY, Jiang YW, Yang SG (2011) Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J Mater Sci 46:734–738

    Article  Google Scholar 

  9. Gu YH, Zhao JG, Zhang WY, Liu SJ, Ge SP, Chen WP, Zhang Y (2016) Improved ferromagnetism and ferroelectricity of La and Co co-doped BiFeO3 ceramics with Fe vacancies. Ceram Int 42:8863–8868

    Article  Google Scholar 

  10. Wei JZ, Zhang M, Deng HL, Chu SJ, Du MY, Yan H (2015) Effect of Cr doping on ferroelectric and magnetic properties of Bi0.8Ba0.2FeO3. Ceram Int 41:8665–8669

    Article  Google Scholar 

  11. Dong GH, Tan GQ, Liu WL, Xia A, Ren HJ (2014) Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method. Ceram Int 40:1919–1925

    Article  Google Scholar 

  12. Liu WL, Tan GQ, Xue X, Dong GH, Ren HJ, Xia A (2014) Phase transition and enhanced multiferroic properties of (Sm, Mn and Cr) co-doped BiFeO3 thin films. Ceram Int 40:12179–12185

    Article  Google Scholar 

  13. Liu WL, Tan GQ, Xue X, Dong GH, Ren HJ (2013) Structure transition and enhanced ferroelectric properties of (Mn, Cr) co-doped BiFeO3 thin films. J Mater Sci: Mater Electron 24:4827–4832

    Google Scholar 

  14. Chang FG, Zhang N, Yang F, Wang SX, Song GL (2007) Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics. J Phys D Appl Phys 40:7799–7803

    Article  Google Scholar 

  15. Shi XX, Qin Y, Chen XM (2014) Enhanced ferroelectric properties in Bi0.86Sm0.14FeO3-based ceramics. Appl Phys Lett 105:192902

    Article  Google Scholar 

  16. Karpinsky DV, Troyanchuk IO, Bushinsky MV, Gavrilov SA, Silibin MV, Franz A (2016) Crystal structure and magnetic properties of Bi1−x Ca x Fe1−x Mn(Ti) x O3 ceramics across the phase boundary. J Mater Sci 51:10506–10514

    Article  Google Scholar 

  17. Suresh P, Babu PD, Srinath S (2016) Role of (La, Gd) co-doping on the enhanced dielectric and magnetic properties of BiFeO3 ceramics. Ceram Int 42:4176–4184

    Article  Google Scholar 

  18. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  19. Baettig P, Ederer C, Spaldin NA (2005) First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: structure, polarization, and magnetic ordering temperature. Phys Rev B 72:214105

    Article  Google Scholar 

  20. Ke QQ, Lou XJ, Wang Y, Wang J (2010) Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys Rev B 82:024102

    Article  Google Scholar 

  21. Yuan GL, Or SW (2006) Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−x Nd x FeO3 (x = 0–0.15) ceramics. Appl Phys Lett 88:062905

    Article  Google Scholar 

  22. Khodabakhsh M, Sen C, Khassaf H, Gulgun MA, Misirlioglu IB (2014) Strong smearing and disappearance of phase transitions into polar phases due to inhomogeneous lattice strains induced by A-site doping in Bi1−x A x FeO3 (A: La, Sm, Gd). J Alloys Compd 604:117–129

    Article  Google Scholar 

  23. Zhai L, Shi YG, Tang SL, Lv LY, Du YW (2009) Large magnetic coercive field in Bi0.9La0.1Fe0.98Nb0.02O3 polycrystalline compound. J Phys D Appl Phys 42:165004

    Article  Google Scholar 

  24. Kim YJ, Kim JW, Raghavan CM, Oak JJ, Kim HJ, Kim WJ, Kim MH, Song TK, Kim SS (2013) Enhancement of electrical properties of (Gd, V) co-doped BiFeO3 thin films prepared by chemical solution deposition. Ceram Int 39:S195–S199

    Article  Google Scholar 

  25. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  26. Zhang FB, Jan H, Saito K, Tanaka T, Nishio M, Nagaoka T, Arita M, Guo QX (2015) Toward the understanding of annealing effects on (GaIn)2O3 films. Thin Solid Films 578:1–6

    Article  Google Scholar 

  27. Li XY, Wang YL, Liu WF, Jiang GS, Zhu CF (2012) Study of oxygen vacancies’ influence on the lattice parameter in ZnO thin film. Mater Lett 85:25–28

    Article  Google Scholar 

  28. Shim JO, Na HS, Jha A, Jang WJ, Jeong DW, Nah IW, Jeon BH, Roh HS (2016) Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions. Chem Eng J 306:908–915

    Article  Google Scholar 

  29. Wang JL, Li L, Peng RR, Fu ZP, Liu M, Lu YL (2015) Structural evolution and multiferroics in Sr-doped Bi7Fe1.5Co1.5Ti3O21 ceramics. J Am Ceram Soc 98:1528–1535

    Article  Google Scholar 

  30. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  31. Cheng ZX, Li AH, Wang XL, Dou SX, Ozawa K, Kimura H, Zhang SJ, Shrout TR (2008) Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J Appl Phys 103:07E507

    Article  Google Scholar 

  32. Aziz F, Chandra M, Khare A, Pandey P, Mavani KR (2014) Effects of Ti-doping on evolution of coexisting magnetic phases in BaFeO3−δ thin films at room temperature. J Appl Phys 115:223907

    Article  Google Scholar 

  33. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  Google Scholar 

  34. Cheng GF, Huang YH, Ge JJ, Lv B, Wu XS (2012) Effects of local structural distortion on magnetization in BiFeO3 with Pr, Ba co-doping. J Appl Phys 111:07C707

    Article  Google Scholar 

  35. Bras GL, Colson D, Forget A, Genand-Riondet N, Tourbot R, Bonville P (2009) Magnetization and magnetoelectric effect in Bi1−x La x FeO3 (0 ≤ x ≤ 0.15). Phys Rev B 80:134417

    Article  Google Scholar 

  36. Hong F, Cheng ZX, Wang JL, Wang XL, Dou SX (2012) Positive and negative exchange bias effects in the simple perovskite manganite NdMnO3. Appl Phys Lett 101:102411

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge financial assistances from Natural Science Foundation of Shanghai (No. 16ZR1424300), National Natural Science Foundation of China (Nos. 11004134 and 61674106), Innovation Program of Shanghai Municipal Education Commission (No. 13YZ064) and Funding of Shanghai Pujiang Program (No. 15PJ1406500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangting Lin.

Ethics declarations

Conflict of interest

There exist no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Yu, Q., Deng, L. et al. Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics. J Mater Sci 52, 7118–7129 (2017). https://doi.org/10.1007/s10853-017-0947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0947-3

Keywords

Navigation