Skip to main content
Log in

Influence of La doping on multiferroic properties of BiFeO3 ceramics prepared by the melt-quenching method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent decades, much attention has been attracted to the multiferroic materials which were expected to give rise to novel properties and multifunctional applications. In this communication, lead-free multiferroic Bi1-xLaxFeO3 ceramics with x = 0, 0.025, 0.05, 0.1, 0.15, and 0.2 were prepared by the melt-quenching method. The influence of La doping on microstructure, dielectric, ferroelectric properties, and leakage current characteristics was investigated. XRD results showed that the generation of secondary phases (mainly Bi25FeO39) was decreased gradually when doping content was below 0.1, but it increased rapidly with La content increasing to 0.2. In addition to this, it could be found that the split reflections of (104) and (110) shifted to a higher value, which proved La doping would cause a structural distortion. SEM images indicated that the melt-quenching method would lead to a columnar crystal which disappeared gradually with the increase in La content. The dielectric constant firstly increased from 178 of x = 0 to 256 of x = 0.1 and then decreased to 165 of x = 0.2 at 10 kHz, while the dielectric loss increased from 0.11 of x = 0 to 0.28 of x = 0.2 with La doping. The value of remnant polarization was significantly improved from 0.05 of x = 0 to 1.19 μC/cm2 of x = 0.2, but TC decreased from 450 to 376 °C. Besides, the leakage current density values of all La-doped samples were about one order of magnitude higher than that of pure BiFeO3. These changes were closely related to the content of secondary phases, change of grain size, and increase in carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3. J. Ceram. Int. 44, 21330–21337 (2018). https://doi.org/10.1016/j.ceramint.2018.08.185

    Article  Google Scholar 

  2. A.Y. Kim, S.H. Han, H.-W. Kang, H.-G. Lee, J.S. Kim, C.I. Cheon, Dielectric and magnetic properties of BiFeO3 ceramics prepared by hydrothermal synthesis. J. Ceram. Int. 38, S397–S401 (2012). https://doi.org/10.1016/j.ceramint.2011.05.019

    Article  Google Scholar 

  3. D. Lin, K.W. Kwok, H.L.W. Chan, Structure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multiferroic ceramics. J. Ceram. Int. 40, 1335–1339 (2014). https://doi.org/10.1016/j.ceramint.2013.07.014

    Article  Google Scholar 

  4. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution. J. Alloy Compd. 747, 895–904 (2018). https://doi.org/10.1016/j.jallcom.2018.03.114

    Article  Google Scholar 

  5. S.K. Srivastav, N.S. Gajbhiye, Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles. J. Am. Ceram. Soc. 95, 3678–3682 (2012). https://doi.org/10.1111/j.1551-2916.2012.05411.x

    Article  Google Scholar 

  6. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, Dielectric, ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013). https://doi.org/10.1111/jace.12475

    Article  Google Scholar 

  7. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018). https://doi.org/10.1039/C8RA02306A

    Article  ADS  Google Scholar 

  8. S.H. Song, Q.S. Zhu, L.Q. Weng, V.R. Mudinepalli, A comparative study of dielectric, ferroelectric and magnetic properties of BiFeO3 multiferroic ceramics synthesized by conventional and spark plasma sintering techniques. J. Eur. Ceram. Soc. 35, 131–138 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.016

    Article  Google Scholar 

  9. X. Yan, G.Q. Tan, W.L. Liu, H.J. Ren, A. Xia, Structural, electric and magnetic properties of Dy and Mn co-doped BiFeO3 thin films. J. Ceram. Int. 41, 3202–3207 (2015). https://doi.org/10.1016/j.ceramint.2014.10.178

    Article  Google Scholar 

  10. N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron 30, 1919–1926 (2019). https://doi.org/10.1007/s10854-018-0465-3

    Article  Google Scholar 

  11. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic properties of (Cd, Ti) modified BiFeO3. J. Phys. Lett. A 381, 2721–2730 (2017). https://doi.org/10.1016/j.physleta.2017.06.012

    Article  ADS  Google Scholar 

  12. P.J. Bai, Y.M. Zeng, J. Han, Y.X. Wei, M.W. Li, Influence of Al doping on structural, dielectric, and ferroelectric properties of multiferroic BiFeO3 ceramics. J. Ceram. Int. 45, 7730–7735 (2019). https://doi.org/10.1016/j.ceramint.2019.01.075

    Article  Google Scholar 

  13. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron 28, 6673–6684 (2017). https://doi.org/10.1007/s10854-017-6359-y

    Article  Google Scholar 

  14. M. De, S. Hajra, R. Tiwari, S. Sahoo, R.N.P. Choudhary, H.S. Tewari, Structural, dielectric and electrical characteristics of BiFeO3-NaNbO3 solid solutions. J. Ceram. Int. 44, 11792–11797 (2018). https://doi.org/10.1016/j.ceramint.2018.03.263

    Article  Google Scholar 

  15. R.Q. Yin, B.W. Dai, P. Zheng, J.J. Zhou, W.F. Bai, F. Wen, J.X. Deng, L. Zheng, J. Du, H.B. Qin, Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering. J. Ceram. Int. 43, 6467–6471 (2017). https://doi.org/10.1016/j.ceramint.2017.02.063

    Article  Google Scholar 

  16. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2839325

    Article  Google Scholar 

  17. D.S. García-Zaleta, A.M. Torres-Huerta, M.A. Domínguez-Crespo, J.A. Matutes-Aquino, A.M. González, M.E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties. J. Ceram. Int. 40, 9225–9233 (2014). https://doi.org/10.1016/j.ceramint.2014.01.143

    Article  Google Scholar 

  18. P. Priyadharsini, A. Pradeep, B. Sathyamoorthy, G. Chandrasekaran, Enhanced multiferroic properties in La and Ce co-doped BiFeO3 nanoparticles. J. Phys. Chem. Solids 75, 797–802 (2014). https://doi.org/10.1016/j.jpcs.2014.03.001

    Article  ADS  Google Scholar 

  19. F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films. J. Scr. Mater. 63, 780–783 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013

    Article  Google Scholar 

  20. S.R. Das, R.N. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. Lett. 101, 034104–034104–034107 (2007). https://doi.org/10.1063/1.2432869

    Article  Google Scholar 

  21. Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89, 2123–2127 (2006). https://doi.org/10.1111/j.1551-2916.2006.01062.x

    Article  Google Scholar 

  22. F. Azougha, R. Freera, M. Thralla, R. Cernika, F. Tunab, D. Collisonb, Microstructure and properties of Co-, Ni-, Zn-, Nb- and W-modified multiferroic BiFeO3 ceramics. J. Eur. Ceram. Soc. 30, 727–736 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.016

    Article  Google Scholar 

  23. W.M. Zhu, Z.G. Zhu, Effects of chemical modification on the electrical properties of 0.67 BiFeO3-0.33 PbTiO3 ferroelectric ceramics. J. Ceram. Int. 30, 1435–1442 (2004). https://doi.org/10.1016/j.ceramint.2003.12.072

    Article  Google Scholar 

  24. A.V. Egorysheva, T.I. Milenov, O.G. Ellert, G.V. Avdeev, P.M. Rafailov, N.N. Efimov, V.M. Nocotortsev, Magnetic glass–ceramics containing multiferroic BiFeO3 crystals. J. Solid State Sci. 40, 31–35 (2015). https://doi.org/10.1016/j.solidstatesciences.2014.12.011

    Article  ADS  Google Scholar 

  25. A. Perejón, E. Gil-González, P.E. Sánchez-Jiménez, A.R. West, L.A. Pérez-Maqueda, Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. J. J. Eur. Ceram. Soc. 39, 330–339 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.008

    Article  Google Scholar 

  26. T.M. Tian, S.L. Yuan, X.L. Wang, Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics. J. Appl. Phys. 106, 123–133 (2009). https://doi.org/10.1063/1.3259392

    Article  Google Scholar 

  27. J.Q. Zhang, L. Wang, L. Bian, J.B. Xu, A.M. Chang, Structural, dielectric and piezoelectric properties of xBiFeO3-(1–x)BaTi0.9Zr0.1O3 ceramics. J. Ceram. Int. 40, 5173–5179 (2014). https://doi.org/10.1016/j.ceramint.2013.10.075

    Article  Google Scholar 

  28. M. Kuwabara, H. Matsuda, N. Kurata, E. Matsuyama, Shift of the curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 80, 2590–2596 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03161.x

    Article  Google Scholar 

  29. M.S. Silva, N.S. Ferreira, Effects of La doping on the structural and dielectric properties of barium titanate ceramics. J. Adv. Mater. Res. 975, 36–41 (2014)

    Article  Google Scholar 

  30. P.J. Bai, Y.M. Zeng, J. Han, Y.X. Wei, M.W. Li, Y.T. Li, Structure, electrical, dielectric and ferroelectric properties of (1–x) BiFeO3- xAl2O3 ceramics. J. Mater. Sci. Mater. Electron. 30, 15413–15419 (2019). https://doi.org/10.1007/s10854-019-01916-7

    Article  Google Scholar 

  31. A. Saxena, P. Sharma, A. Saxena, V.K. Verma, R.S. Saxena, Effect of La doping on dielectric properties of BiFe0.95Mn0.05O3 multiferroics. J. Ceram. Int. 40, 15065–15072 (2014). https://doi.org/10.1016/j.ceramint.2014.06.114

    Article  Google Scholar 

  32. B.P. Reddy, M.C. Sekhar, B.P. Prakash, Y. Suh, S.H. Park, Photocatalytic, magnetic, and electrochemical properties of La doped BiFeO3 nanoparticles. J. Ceram. Int. 44, 19521–19521 (2018). https://doi.org/10.1016/j.ceramint.2018.07.191

    Article  Google Scholar 

  33. S.F. Wang, G.O. Dayton, Dielectric properties of fine-grained barium titanate based X7R materials. J. Am. Ceram. Soc. 82, 2677–2682 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02141.x

    Article  Google Scholar 

  34. T. Higashiwada, H. Asaoka, H. Hayashi, A. Kishimoto, Effect of additives on the pore evolution of zirconia based ceramic foams after sintering. J. Eur. Ceram. Soc. 27, 2217–2222 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.08.008

    Article  Google Scholar 

  35. J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V.D. Travkin, A.A. Mukhin, A. Loidl, On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. J. Eur. Phys. J. B. 75, 451–460 (2010). https://doi.org/10.1140/epjb/e2010-00170-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the fund of the Applied Basic Research Foundation of Yunnan Province (Grant Nos. 202002AB080001) and Major Science and Technology Projects of Yunnan Province (Grant Nos. 202002AB080001-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, G., Lin, Z. et al. Influence of La doping on multiferroic properties of BiFeO3 ceramics prepared by the melt-quenching method. Appl. Phys. A 127, 351 (2021). https://doi.org/10.1007/s00339-021-04494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04494-w

Keywords

Navigation