Skip to main content
Log in

Control of Coercivity and Magnetic Anisotropy Through Cobalt Substitution in Ni-Zn Ferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present study aims to develop low magnetic anisotropy Ni-Zn nanoferrites with cobalt substitution. The results enable the development of nanoferrite samples with superior magnetic properties suitable for high-frequency core applications through an understanding of the influence of cobalt in the manipulation of the magnetic anisotropy of the nanoferrite. Ni0.65-xZn0.35CoxFe2O4 (x varies from 0.00 to 0.24 in steps of 0.04) particles were synthesized by sol–gel method using polyvinyl alcohol as a chelating agent. X-ray diffraction patterns of all the samples showed sharp peaks corresponding to spinel structure with no extra phases. Transmission electron micrographs depict uniform size distribution of particles in the range 185 to 247 nm. Magnetic properties were measured at 300 K and 5 K. Excellent control to reduce the magnetic anisotropy to a negligible amount can be achieved by incorporating minute amounts of cobalt in nickel-zinc ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aamir, M., Bibi, I., Ata, S., Majid, F., Alwadai, N., Almuqrin, A.H., Albalawi, H., Slimani, Y., Bashir, M., Iqbal, M.: Micro-emulsion approach for the fabrication of La1−xGdxCr1−yFeyO3: magnetic, dielectric and photocatalytic activity evaluation under visible light irradiation. Results Phys 23, 104023 (2021)

  2. Slimani, Y., Selmi, A., Hannachi, E., et al.: Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  Google Scholar 

  3. Slimani, Y., Unal, B., Almessiere, M.A., Hannachi, E., Yasin, G.,  Baykal A., Ercan, I.: Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J Mater Sci Mater Electron 31, 7786–7797 (2020)

  4. Almessiere, M.A., Slimani, Y., Baykal, A.: Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nano hexaferrite. Ceram. Int. 45(1), 963–969 (2019)

    Article  Google Scholar 

  5. Almessiere, M.A., Slimani, Y., Güngüneş, H., El Sayed, H.S., Baykal, A.: AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12O19 nano hexaferrites. Ceram. Int. 44(9), 10470–10477 (2018)

    Article  Google Scholar 

  6. Almessiere, M.A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A.: Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results in Phys 13, 102166 (2019)

  7. Slimani, Y., Almessiere, M.A., Shirsath, S.E., Hannachi, E., Yasin, G., Baykal, A., Ozçelik, B., Ercan, I.: Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

  8. Slimani, Y.,  Hannachi, E., Azzouz, F.B., Salem, M.B.: Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics 92, 5–12 (2018)

  9. Slimani, Y., Hannachi, E., Hamrita, A., Salem, M.K.B., Azzouz, F.B., Manikandan, A., Salem, M.B.: Comparative investigation of the ball milling role against hand grinding on microstructure, transport and pinning properties of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ. Ceram. Int. 44(Issue 16),  19950–19957 (2018)

  10. Hannachi, E., Slimani, Y., Azzouz, F.B., Ekicibil, A.: Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. e44(Issue 15) 18836–18843 (2018)

  11. Slimani, Y., Almessiere, M.A., Hannachi, E., Baykal, A., Manikandan, A., Mumtaz, M., Azzouz, F.B.: Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(Issue 2), 2621–2628 (2019)

  12. Seevakan, K., Manikandan, A., Devendran, P., Slimani,  Y., Baykal, A., Alagesan, T.: Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, 165254 (2019)

  13. Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Taskhandi, N., Sertkol, M., Baykal, A., Shirsath, S.E., Ercan, İ., Ozçelik, B.: Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties, Ultrason. Sonochem. 58, 104621 (2019)

  14. Slimani, Y., Almessiere, M.A., Güner, S., et al.: Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. J Sol-Gel Sci Technol 95, 202–210 (2020)

    Article  Google Scholar 

  15. Almessiere, M.A., Slimani, Y., Güner, S., Baykal, A., Ercan, I.: Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. J. Rare Earths 37, 871–878 (2019)

    Article  Google Scholar 

  16. Korkmaz, A.D., Güner, S., Slimani, Y., et al.: Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel nanoferrites. J Supercond Nov Magn 32, 1057–1065 (2019). https://doi.org/10.1007/s10948-018-4793-6

    Article  Google Scholar 

  17. Slimani, Y., Almessiere, M.A., Korkmaz, A.D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S.E., Baykal, A.: Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nano spinel ferrites: Ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019)

  18. Slimani, Y., Almessiere, M.A., Sertkol, M., Shirsath, S.E., Baykal, A., Nawaz, M., Akhtar, S., Ozcelik, B., Ercan, I.: “Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (0.0 ≤ x ≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. Ultrason. Sonochem. 57, 203–211 (2019)

  19. Almessiere, M.A., Slimani, Y., Guner, S., Sertkol, M., Korkmaz, A.D., Shirsath, S.E., Baykal, A.: Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites, Ultrason. Sonochem. 58, 104654 (2019)

  20. Akhtar, S., Rehman, S., Almessiere, M.A., Khan, F.A., Slimani, Y., Baykal, A.: Synthesis of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials 9(11):1635 (2019). https://doi.org/10.3390/nano9111635

  21. Somvanshi, S.B., Kharat, P.B., Saraf, T.S., Somwanshi, S.B., Shejul, S.B., Jadhav, K.M.: “Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater. Res. Innovat 1, 6 (2020)

    Google Scholar 

  22. Kumar, A.M., Varma, M.C., Dube, C.L., Rao, K.H., Kashyap, S.C.: Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J. Magn. Magn. Mater. 320(14), 1995–2000 (2008). https://doi.org/10.1016/j.jmmm.2008.02.129

    Article  ADS  Google Scholar 

  23. Chintala, J.N.P.K., Kaushik, S.D., Chaitanya, V.M., Choudary, G.S.V.R.K., Rao, K.H.: An accurate low temperature cation distribution of nano Ni-Zn ferrite having a very high saturation magnetization. J. Supercond. Nov. Magn. 34, 149–156 (2021). https://doi.org/10.1007/s10948-020-05728-3

  24. Varma, M.C., Kumar, A.M., Choudary, G.S.V.R.K., Rao, K.H.: Effect of particle size on saturation magnetization and magnetic anisotropy of Ni0.65Zn0.35Fe2O4 nanoparticles. Int.  J.  Nanosci. 11(03), 1240003 (2012). https://doi.org/10.1142/S0219581X12400030

  25. Kumar, A.M., Rao, K.S., Varma, M.C., Rao, K.H.: Investigations of surface spin canting in Ni-Zn nanoferrite and its development as magnetic core for microwave applications. J. Magn. Magn. Mater. 471, 262–266 (2019)

  26. Lakshminadh, M., Murugan, M., Choudary, G.S.V.R.K., Varma, M.C.: Impact of annealing temperature on resonance field, line-width, and anisotropy in Ni0.65Zn0.35Fe2O4. AIP Conf. Proc. 2269, 030055 (2020). https://doi.org/10.1063/5.0019888

  27. Sun, K., Lan, Z., Yu, Z., Xu, Z., Jiang, X., Wang, Z., Liu, Z.,  Luo, M.: Temperature and frequency characteristics of low-loss MnZn ferrite in a wide temperature range. J. Appl. Phys. 109, 106103 (2011)

  28. Kang, S.H., Yoo, H.I.: The effect of nonstoichiometry (δ) on the magnetic properties of (Mg0.22Mn0.07Fe0.71)3−δO4 ferrite. J. Appl. Phys. 88, 4754 (2000)

  29. Ahsan, M.Z., Islam, M.A., Khan, F.A.: Effects of sintering temperature on ac conductivity, permittivity, and permeability of manganese doped cobalt ferrite nanoparticles. Results in Phys. 19, 103402 (2020)

  30. Zhao, J., Liu, L., Jiang, R., Zhang, H.: Dielectric relaxation and magnetic resonance in microwave absorption performance of CoxFe3-xO4 (0≤x≤1) nanocrystals. Ceram. Int. 45, 18347–18355 (2019)

    Article  Google Scholar 

  31. Kaykan, L., Sijo, A.K., Żywczak, A., et al.: Tailoring of structural and magnetic properties of nanosized lithium ferrites synthesized by sol–gel self-combustion method. Appl. Nanosci. (2020)

  32. Kulikowski, J.: Soft magnetic ferrites—development or stagnation? J. Magn. Magn. Mater. 41, 56–62 (1984)

    Article  ADS  Google Scholar 

  33. Byun, T.Y., Byeon, S.C., Hong, K.S.: Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites. IEEE Trans. Magn. 35, 3445–3447 (1999)

    Article  ADS  Google Scholar 

  34. Gangaswamy, D.R.S., Bharadwaj, S., Varma, M.C., Choudary, G.S.V.R.K., Rao, K.H.: Unusual increase in permeability in cobalt substituted Ni-Zn-Mg ferrites, J. Magn. Magn. Mater. 468, 73–78 (2018)

  35. Gangaswamy, D.R.S., Choudary, G.S.V.R.K., Varma, M.C., Bharadwaj S., Rao, K.H.: Enhanced Magnetic Permeability in Ni0.55−yCoyZn0.35Mg0.10Fe2O4 Synthesized by Sol-Gel Method. J. Supercond. Nov. Magn. 31,  3753–3760 (2018)

  36. Willie, S., Thompson J.E.: The magnetic anisotropy of cobalt. Proc. R. Soc. Lond. A225, 362–375 (1954)

  37. Tachiki, M.: Origin of the magnetic anisotropy energy of cobalt ferrite. Progress Theoret. Phys. 23, 1055–1072 (1960)

    Article  ADS  Google Scholar 

  38. Yosida, K., Tachiki, M.: On the origin of the magnetic anisotropy energy of ferrites. Progress Theoret. Phys. 17, 331–359 (1957)

    Article  ADS  Google Scholar 

  39. Slonczewski, J.C.: Anisotropy and magnetostriction in magnetic oxides. J. Appl. Phys. 32, S253 (1961)

    Article  ADS  Google Scholar 

  40. Darby, M., Isaac, E.: Magneto crystalline anisotropy of ferro- and ferrimagnetics. IEEE Trans. Magn. 10, 259–304 (1974)

    Article  ADS  Google Scholar 

  41. Varma, M.C., Kumar, A.M., Rao, K.H.: Enhanced magnetization in cobalt substituted Ni–Zn nanoferrites. Int. J. Nanosci. 10, 571–576 (2011)

  42. S. Jagadeesh Kumar, P. Prameela, K. SrinivasaRao, J. N. Kiran and K. H. Rao, Structural and magnetic properties of copper-substituted nickel–zinc nanoparticles prepared by sol-gel method, J. Supercond. Nov. Magn. 33 (2020) 693–705

  43. Mondal, R., Dey, S., Majumder, S., Poddar, A., Dasgupta, P., Kumar, S., Study on magnetic and hyperfine properties of mechanically milled Ni0.4Zn0.6Fe2O4 nanoparticles, J. Magn. Magn. Mater. 448 (2018) 135–145

  44. Kusigerski, V., Illes, E., Blanusa, J., Gyergyek, S., Boskovic, M., Perovic, M., Spasojevic, V.: Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. J. Magn. Magn. Mater. 475, 470–478 (2019)

    Article  ADS  Google Scholar 

  45. Ghasemi, A., Ghasemi, E., Paimozd, E.: Influence of copper cations on the magnetic properties of NiCuZn ferrite nanoparticles. J. Magn. Magn. Mater. 323, 1541–1545 (2011)

    Article  ADS  Google Scholar 

  46. Lim, D., Kong, H., Lim, C., Kim, N.: Sang Eun Shim, Sung-Hyeon Baeck, Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction. Int. J. Hydrogen Energ. 44, 23775–23783 (2019)

    Article  Google Scholar 

  47. Liu, X.M., Fu, S.Y., Xial , H.M., Huang, C.J.: Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route. Phys. B 370, 14–21 (2005)

    Article  ADS  Google Scholar 

  48. Almessiere, M.A., Trukhanov, A.V., Slimani, Y., You, K.Y., Trukhanov, S.V., Trukhanova, E.L., Esa, F., Sadaqat, A., Chaudhary, K., Zdorovets, M., Baykal, A.: Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202 (2019). https://doi.org/10.3390/nano9020202

  49. Rao, K.S., Nayakulu, S.V.R., Varma, M.C., Choudary, G.S.V.R.K., Rao, K.H.: Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J. Magn. Magn. Mater. 451, 602–608 (2018)

  50. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  51. Standley, K.J.: Oxide Magnetic Materials. Clarendon, Oxford (1972)

    Google Scholar 

  52. Sagar, E., Shirsath, R.H., Kadam, Gaikwad, A.S., Ghasemi, A., Morisako, A.: Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater. 323(Issue 23), 3104–3108 (2011)

  53. Gnanaprakash, G.: John Philip, Baldev Raj, Effect of divalent metal hydroxide solubility product on the size of ferrite nanoparticles. Mater. Lett. 61, 4545–4548 (2007)

    Article  Google Scholar 

  54. Sun, Y.J., Diao, Y.F., Wang, H.G., Chen, G., Zhang, M., Guo, M.: Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co) Fe2O4 from low nickel matte. Ceram. Int. 43, 16474–16481 (2017)

    Article  Google Scholar 

  55. Chakrabarty, S., Bandyopadhyay, S., Pal, M., Dutta, A.: Sol-gel derived cobalt containing Ni–Zn ferrite nanoparticles: dielectric relaxation and enhanced magnetic property study, Mater. Chem. Phys. 259, 124193 (2021)

  56. Maaz, K., Mumtaz, A., Hasanain, S.K., Bertino, M.F.: Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn. Mater 322, 2199–2202 (2010)

    Article  ADS  Google Scholar 

  57. Fiorillo, F.: Anisotropy and magnetization process in soft magnets: principles, experiments, applications. J. Magn. Magn. Mater 304, 139–144 (2006)

    Article  ADS  Google Scholar 

  58. Nairan, A., Khan, M., Khan, U., Iqbal, M., Riaz, S., Naseem, S.: Temperature-dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures. Nanomaterials 6, 73 (2016)

    Article  Google Scholar 

  59. Inui, T., Ogasawara, N.: Member, Grain-size effects on microwave ferrite magnetic properties. IEEE Trans. Magn. 13, 1729 (1977)

    Article  ADS  Google Scholar 

  60. Bouchaud, J.P., Zerah, P.G.: The initial susceptibility of ferrites: a quantitative theory. J. Appl. Phys. 67, 5512 (1990)

    Article  ADS  Google Scholar 

  61. Mason, W.P.: Domain wall relaxation in nickel. Phys Rev Lett 83, 683 (1951)

    ADS  Google Scholar 

  62. Melikhov, Y., Snyder, J.E., Jiles, D.C., Ring, A.P., Paulsen, J.A., Lo, C.C.H., Dennis, K.W.: Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite. J. Appl. Phys. 99, 08R102 (2006)

    Article  Google Scholar 

  63. Zener, C.: Classical theory of the temperature dependence of magnetic anisotropy energy. Phys. Rev. 96, 1335 (1954)

    Article  ADS  Google Scholar 

  64. Donald, S.: McClure, The distribution of transition metal cations in spinel’s. J. Phys. Chem. Solids 3, 311–317 (1957)

    Article  Google Scholar 

  65. Hugh, C., Sr.: O’Neill and Alexandra Navrotsky, Simple spinel’s: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Miner. 68, 181–194 (1983)

    Google Scholar 

  66. Brown Jr., W.F.: Theory of the approach to magnetic saturation, Phys. Rev. 58, 736 (1940)

  67. Gerald, F.: Dionne, Magnetic relaxation and anisotropy effects on high-frequency permeability. IEEE Trans. Magn. 39, 3121–3126 (2003)

    Article  Google Scholar 

  68. Hauser, H., Jiles, D.C., Melikhov, Y., Li, L., Grössinger, R.: An approach to modeling the dependence of magnetization on magnetic field in the high field regime. J. Magn. Magn. Mater 300, 273–283 (2006)

    Article  ADS  Google Scholar 

  69. Beatrice, C., Dobák, S., Tsakaloudi, V., Ragusa, C., Fiorillo, F., Martino, L.,  Zaspalis, V.: Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites. AIP Advances 8, 047803 (2018)

Download references

Acknowledgements

Author J. N. Pavan Kumar Chintala is grateful to the Dr. A P J Abdul Kalam Central Research Laboratory of Sir C R Reddy College (Autonomous and Aided), Eluru, AP, India, for constant encouragement. Author GSVRK Choudary is very thankful to UGC-SERO, Hyderabad, for sanctioning a Minor Research Project No. FMRP-6812/2017-18 (SERO/UGC) to carry out the present work partially. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

Author J. N. Pavan Kumar Chintala received financial support from the Dr.A P J Abdul Kalam Central Research Laboratory of Sir C R Reddy College (Autonomous and Aided), Eluru, AP, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Chaitanya Varma or G. S. V. R. K. Choudary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintala, J.N.P.K., Varma, M.C., Choudary, G.S.V.R.K. et al. Control of Coercivity and Magnetic Anisotropy Through Cobalt Substitution in Ni-Zn Ferrite. J Supercond Nov Magn 34, 2357–2370 (2021). https://doi.org/10.1007/s10948-021-05965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05965-0

Keywords

Navigation