Skip to main content
Log in

Reorganization of aquatic communities from low-nutrient lakes in northwestern New Brunswick, Canada

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sparse monitoring of New Brunswick (Canada) lakes creates challenges for understanding mechanisms of deteriorating water quality, such as recent instances of increased cyanobacterial biomass in low-nutrient systems. To assess long-term environmental change experienced by low-nutrient, dimictic New Brunswick lakes we use sedimentary remains of algal pigments and Cladocera in dated cores from impact (prone to late-summer algal blooms, Lac Unique) and reference (no observed algal blooms, First and States) lakes. Overall, all three lakes now exhibit greater bosminid abundance and fewer daphniids, lower Cladocera richness, and smaller average cladoceran body size, although some lake-specific differences in assemblage response exist that cannot be related solely to top-down or bottom-up forces. Zooplankton trends are most pronounced at Lac Unique and First Lake, where algal production is generally greater. Across all three lakes, the only significant (IndVal: p < 0.05) cladoceran bioindicator of the post-1990 period is the pelagic bosminid group, whereas prior to ~ 1990, Daphnia longispina-complex and several littoral taxa were significant (IndVal: p < 0.05) bioindicators. These temporal shifts suggest that the smaller-bodied bosminid group may now be favored over its larger-bodied pelagic competitor Daphnia sp. in these lakes, irrespective of heterogeneous long-term algal patterns inferred from stable sedimentary pigments. We suggest that the indirect effects of climate change, principally during the spring and summer quarters in New Brunswick, may be associated with marked shifts in limnological structure, as evidenced by changes in dominant zooplankton of the pelagic zone. However, further research is needed to rule out whether or not size-selective predation, and its potential interactions with climate change and other stressors, are key mechanisms favoring increased bosminids in low-nutrient, dimictic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamczuk M (2015) Past, present, and future roles of small cladoceran Bosmina longirostris (O. F. Müller, 1785) in aquatic ecosystems. Hydrobiologia 767:1–11

    Article  Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. 1. Basin analysis, coring, and chronological techniques. Springer, Dordrecht, pp 171–203

    Google Scholar 

  • Armstrong Z, Kurek J (2018) Sensitivity and response of low-nutrient lakes to post twentieth century environmental change in New Brunswick, Canada. J Paleolimnol. https://doi.org/10.1007/s10933-018-0046-8

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zone in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Berström SE et al (2000) Habitat distribution of zooplankton in relation to macrophytes in a eutrophic lake. Internationale Verinigung fur Theoretische und Angewandte Limnologie Verhandlungen 27:2861–2864

    Google Scholar 

  • Cottingham KL, Ewing HA, Greer ML, Carey CC, Weathers KC (2015) Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere 6:1–19

    Article  Google Scholar 

  • Curry A (2013) New Brunswick lake ecosystems: building a comprehensive provincial monitoring programme. Final report 2013 NB Environmental Trust Fund

  • Curry A (2014) Future state of NB lakes. Final report 2014 NB Environmental Trust Fund

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793

    Article  Google Scholar 

  • Davidson TA, Sayer CD, Perrow M, Bramm M, Jeppesen E (2010) The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Fresh Biol 55(3):546–564

    Article  Google Scholar 

  • DeMott WR, Kerfoot CW (1982) Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63:1949–1966

    Article  Google Scholar 

  • Dodds WK, Perkin JS, Gerken JE (2013) Human impact on freshwater ecosystem services: a global perspective. Environ Sci Technol 47:9061–9068

    Article  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Glew J (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235–239

    Article  Google Scholar 

  • Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:241–243

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–25

    Article  Google Scholar 

  • Hargan KE, Nelligan C, Jeziorski A, Rühland KM, Paterson AM, Keller W, Smol JP (2016) Tracking the long-term responses of diatoms and cladocerans to climate warming and human influences across lakes of the Ring of Fire in the Far North of Ontario, Canada. J Paleolimnol 56:153–172

    Article  Google Scholar 

  • Harris MA, Cumming BF, Smol JP (2006) Assessment of recent environmental changes in New Brunswick (Canada) lakes based on paleolimnological shifts in diatom species assemblages. Can J Bot 84:151–162

    Article  Google Scholar 

  • Jeziorski A, Yan N (2006) Species identity and aqueous calcium concentrations as determinants of calcium concentrations of freshwater crustacean zooplankton. Can J Fish Aquat Sci 63:1007–1013

    Article  Google Scholar 

  • Jiang X, Yang W, Zhang L, Chen L, Niu Y (2014) Predation and cyanobacteria jointly facilitate competitive dominance of small-bodied cladocerans. J Plankton Res 36(4):956–965

    Article  Google Scholar 

  • Juggins S (2009) Rioja: analysis of Quaternary science data. R package version 0.5-6

  • Korhola A, Rautio M (2001) tracking environmental change using lake sediments. Zool Ind 4:5–41

    Google Scholar 

  • Korosi JB, Smol JP (2012a) An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 1—the Daphniidae, Leptodoridae, Bosminidae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae. J Paleolimnol 48:571–586

    Article  Google Scholar 

  • Korosi JB, Smol JP (2012b) An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 2—the Chydoridae. J Paleolimnol 48:587–622

    Article  Google Scholar 

  • Korosi JB, Kurek J, Smol JP (2013a) A review on utilizing Bosmina size structure archived in lake sediments to infer historic shifts in predation regimes. J Plankton Res 35:444–460

    Article  Google Scholar 

  • Korosi JB, Ginn BK, Cumming BF, Smol JP (2013b) Establishing past environmental conditions and tracking long-term environmental change in the Canadian Maritime provinces using lake sediments. Environ Rev 21:15–27

    Article  Google Scholar 

  • Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612

    Article  Google Scholar 

  • Kurek J, Weeber RC, Smol JP (2011) Environment trumps predation and spatial factors in structuring cladoceran communities from Boreal Shield lakes. Can J Fish Aquat Sci 68:1408–1419

    Article  Google Scholar 

  • Labaj AL, Kurek J, Weeber RC, Smol JP (2013) Long-term changes in invertebrate size structure and composition in a boreal headwater lake with a known minnow introduction. J Limnol 72(2):215–226

    Article  Google Scholar 

  • Labaj AL, Kurek J, Jeziorski A, Smol JP (2015) Elevated metals concentrations inhibit biological recovery of Cladocera in previously acidified boreal lakes. Fresh Biol 60:347–359

    Article  Google Scholar 

  • Lavery JM, Kurek J, Rühland KM, Gillis CA, Pisaric MFJ, Smol JP (2014) Exploring the environmental context of recent Didymosphenia geminate proliferation in Gaspésie, Quebec, using Paleolimnology. Can J Fish Aquat Sci 71:616–626

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Practical methods for analysis of sedimentary pigments. In: Smol JP, Last WM (eds) Developments in palaeoenvironmental research: tracking environmental changes using lake sediments, biological techniques and indicators, vol 3. Kluwer, Dordrecht

    Google Scholar 

  • Luoto TP, Nevalainen L (2012) Ecological responses of aquatic invertebrates to climate change over the past ∼ 400 years in a climatically ultra-sensitive lake in the Niedere Tauern Alps (Austria). Fundam Appl Limnol 181:169–181

    Article  Google Scholar 

  • Maaref A (2014) Rapport Final du FFE—Projet 130251: plan de lutte contre la propogation des algues bleu-vert dans le basin verstan du Lac Unique. Government of New Brunswick ETF

  • Magnuson JJ, Benson BJ, Kratz TK (1990) Temporal coherence in the limnology of a suite of lakes in Wisconsin, USA. Fresh Biol 23:145–159

    Article  Google Scholar 

  • Manca M, Sm Nocentini, Belis CA, Comoli P, Cormbella L (1996) Invertebrate fossil remains as indicators of late Quaternary environmental changes in Latium crater lakes (L. Albana and L. Nemi). Memorie dell’Istuto Italiano di Idrobiologia 55:149–176

    Google Scholar 

  • Nevalainen L, Ketola M, Korosi JB, Manca M, Kurmayer R, Koinig K, Psenner R, Luoto TP (2014) Zooplankton (Cladocera) species turnover and long-term decline of Daphnia in two high mountain lakes in the Austrian Alps. Hydrobiologia 722:75–91

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-4

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  Google Scholar 

  • Patoine A, Leavitt P (2006) Century-long synchrony of fossil algae in a chain of Canadian prairie lakes. Ecology 87:1710–1721

    Article  Google Scholar 

  • Patterson RT, Swindles GT (2014) Influence of ocean-atmosphere oscillations on lake ice phenology in eastern North America. Clim Dyn 45:2293–2308

    Article  Google Scholar 

  • Pick FR (2016) Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can J Fish Aquat Sci 73:1149–1158

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reynolds CS (2006) The ecology of freshwater phytoplankton. Cambridge University Press, New York

    Book  Google Scholar 

  • Roberts DW (2007) labdsv: ordination and multivariate analysis for ecology. R package version 1.1

  • Schelske CL, Peplow A, Brenner M, Spencer CN (1994) Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10:115–128

    Article  Google Scholar 

  • Schulz KL, Sterner RW (1999) Phytoplankton phosphorus limitation and food quality for Bosmina. Limnol Oceanogr 44:1549–1556

    Article  Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406

    Article  Google Scholar 

  • Smol JP (2010) The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshw Biol 55:43–59

    Article  Google Scholar 

  • Sturtevant R (2006) Cladoceran field guide—sizes. Great Lakes Environmental Research Laboratory (GLERL). http://www.glerl.noaa.gov/seagrant/GLWL/Zooplankton/Cladocera/CladoceraKeySizeTable.html

  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A, McGowan S, Moorhouse H, Morabito G, Pick FR, Stevensen MA, Thompson PL, Vinebrooke RD (2015) Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18:375–384

    Article  Google Scholar 

  • Thienpont JR, Korosi JB, Cheng ES, Deasley K, Pisaric MFJ, Smol JP (2015) Recent climate warming favours more specialized cladoceran taxa in western Canadian Arctic lakes. J Biogeogr 42:1553–1565

    Article  Google Scholar 

  • Thompson R, Kamenik C, Schmidt R (2005) Ultra-sensitive Alpine lakes and climate change. J Limnol 64:139–152

    Article  Google Scholar 

  • Vogt RJ, Rusak JA, Patoine A, Leavitt PR (2011) Differential effects of energy and mass influx on the landscape synchrony of lake ecosystems. Ecology 92:1104–1114

    Article  Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Article  Google Scholar 

  • Walseng B, Halvorsen G (2016) Freshwater Crustaceans in Norway. Norwegian Institute for Nature Research (NINA). http://www.nina.no/english/Environmental-monitoring/Freshwater-crustaceans

  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ (2017) Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change. https://doi.org/10.1007/s10584-017-1966-4

    Google Scholar 

  • Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by a 2015–2016 New Brunswick Environmental Trust Fund (NB ETF) Grant and a 2015 Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to JK. MD was supported by an Independent Student Research Grant (ISRG) from Mount Allison University. IGE acknowledges generous support from the Canada Research Chairs program. We also thank Paul MacKeigan for field and lab assistance, Leanne Elchyshyn for processing pigment samples and Allen Curry for data sharing and study site suggestions. Two reviewers and Andrew Labaj provided helpful comments that improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Kurek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daly, M., Kurek, J., Gregory-Eaves, I. et al. Reorganization of aquatic communities from low-nutrient lakes in northwestern New Brunswick, Canada. J Paleolimnol 61, 185–200 (2019). https://doi.org/10.1007/s10933-018-0052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-018-0052-x

Keywords

Navigation